Similarity Learning via Optimizing the Data-Dependent Kernel

被引:0
|
作者
Xiong, Huilin [1 ]
Shi, Panfei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
关键词
D O I
10.1109/IJCBS.2009.67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a scheme of similarity measure learning based on kernel optimization. Employing a data-dependent kernel model, the proposed scheme optimizes the spatial distribution of the training data in the feature space, aiming to maximize the class separability of the data in the feature space. The learned similarity measure, derived from the optimized kernel, exhibits a favorable feature to the task of pattern classification, that the spatial resolution of the embedding space is expanded around the boundary areas, and shrunk around the homogeneous areas. Experiments demonstrate that using the learned similarity measure can substantially improve the performances of the K-nearest-neighbor classifier.
引用
收藏
页码:512 / 516
页数:5
相关论文
共 50 条
  • [41] Online primal-dual learning for a data-dependent multi-kernel combination model with multiclass visual categorization applications
    Huang, Shuangping
    Jin, Lianwen
    Xue, Kunnan
    Fang, Yuan
    [J]. INFORMATION SCIENCES, 2015, 320 : 75 - 100
  • [42] Predicting data-dependent jitter
    Buckwalter, J
    Analui, B
    Hajimiri, A
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (09) : 453 - 457
  • [43] Data-dependent metric filtering
    Mic, Vladimir
    Zezula, Pavel
    [J]. INFORMATION SYSTEMS, 2022, 108
  • [44] Optimizing the Use of STT-RAM in SSDs Through Data-Dependent Error Tolerance
    Wang, Hao
    Zhao, Kai
    Li, Jiangpeng
    Zhang, Tong
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (11) : 2743 - 2747
  • [45] Data-dependent PAC-Bayes priors via differential privacy
    Dziugaite, Gintare Karolina
    Roy, Daniel M.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [46] Denoising in Representation Space via Data-Dependent Regularization for Better Representation
    Chen, Muyi
    Wang, Daling
    Feng, Shi
    Zhang, Yifei
    [J]. MATHEMATICS, 2023, 11 (10)
  • [47] Data-Dependent Generalization Bounds via Variable-Size Compressibility
    Sefidgaran, Milad
    Zaidi, Abdellatif
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (09) : 6572 - 6595
  • [48] Universal estimation of divergence for continuous distributions via data-dependent partitions
    Wang, Q
    Kulkarni, SR
    Verdú, S
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 152 - 156
  • [49] Learning Functions Using Data-Dependent Regularization: Representer Theorem Revisited
    Zou, Qing
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT III, 2020, 12139 : 312 - 326
  • [50] Data-Dependent Learning of Symmetric/Antisymmetric Relations for Knowledge Base Completion
    Manabe, Hitoshi
    Hayashi, Katsuhiko
    Shimbo, Masashi
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3754 - 3761