Similarity Learning via Optimizing the Data-Dependent Kernel

被引:0
|
作者
Xiong, Huilin [1 ]
Shi, Panfei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
关键词
D O I
10.1109/IJCBS.2009.67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a scheme of similarity measure learning based on kernel optimization. Employing a data-dependent kernel model, the proposed scheme optimizes the spatial distribution of the training data in the feature space, aiming to maximize the class separability of the data in the feature space. The learned similarity measure, derived from the optimized kernel, exhibits a favorable feature to the task of pattern classification, that the spatial resolution of the embedding space is expanded around the boundary areas, and shrunk around the homogeneous areas. Experiments demonstrate that using the learned similarity measure can substantially improve the performances of the K-nearest-neighbor classifier.
引用
收藏
页码:512 / 516
页数:5
相关论文
共 50 条
  • [21] APPLYING OPTIMAL ALGORITHM TO DATA-DEPENDENT KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chen, I-Ling
    Li, Cheng-Hsuan
    Kuo, Bor-Chen
    Huang, Hsiao-Yun
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2808 - 2811
  • [22] ADAPTIVE META-LEARNING VIA DATA-DEPENDENT PAC-BAYES BOUNDS
    Friedman, Lior
    Meir, Ron
    [J]. CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 796 - 810
  • [23] Data-Dependent Hashing via Nonlinear Spectral Gaps
    Andoni, Alexandr
    Naor, Assaf
    Nikolov, Aleksandar
    Razenshteyn, Ilya
    Waingarten, Erik
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 787 - 800
  • [24] Filter Forests for Learning Data-Dependent Convolutional Kernels
    Fanello, Sean Ryan
    Keskin, Cem
    Kohli, Pushmeet
    Izadi, Shahram
    Shotton, Jamie
    Criminisi, Antonio
    Pattacini, Ugo
    Paek, Tim
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1709 - 1716
  • [25] Data-Dependent Label Distribution Learning for Age Estimation
    He, Zhouzhou
    Li, Xi
    Zhang, Zhongfei
    Wu, Fei
    Geng, Xin
    Zhang, Yaqing
    Yang, Ming-Hsuan
    Zhuang, Yueting
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) : 3846 - 3858
  • [26] Data-dependent compression of random features for large-scale kernel approximation
    Agrawal, Raj
    Campbell, Trevor
    Huggins, Jonathan
    Broderick, Tamara
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [27] On Optimizing Machine Learning Workloads via Kernel Fusion
    Ashari, Arash
    Tatikonda, Shirish
    Boehm, Matthias
    Reinwald, Berthold
    Campbell, Keith
    Keenleyside, John
    Sadayappan, P.
    [J]. ACM SIGPLAN NOTICES, 2015, 50 (08) : 173 - 182
  • [28] Data-dependent kn-NN and kernel estimators consistent for arbitrary processes
    Kulkarni, SR
    Posner, SE
    Sandilya, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) : 2785 - 2788
  • [29] Data-dependent and Scale-Invariant Kernel for Support Vector Machine Classification
    Malgi, Vinayaka Vivekananda
    Arya, Sunil
    Rasool, Zafaryab
    Tay, David
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 171 - 182
  • [30] Overcoming weaknesses of density peak clustering using a data-dependent similarity measure
    Rasool, Zafaryab
    Aryal, Sunil
    Bouadjenek, Mohamed Reda
    Dazeley, Richard
    [J]. PATTERN RECOGNITION, 2023, 137