Similarity Learning via Optimizing the Data-Dependent Kernel

被引:0
|
作者
Xiong, Huilin [1 ]
Shi, Panfei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
关键词
D O I
10.1109/IJCBS.2009.67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a scheme of similarity measure learning based on kernel optimization. Employing a data-dependent kernel model, the proposed scheme optimizes the spatial distribution of the training data in the feature space, aiming to maximize the class separability of the data in the feature space. The learned similarity measure, derived from the optimized kernel, exhibits a favorable feature to the task of pattern classification, that the spatial resolution of the embedding space is expanded around the boundary areas, and shrunk around the homogeneous areas. Experiments demonstrate that using the learned similarity measure can substantially improve the performances of the K-nearest-neighbor classifier.
引用
收藏
页码:512 / 516
页数:5
相关论文
共 50 条
  • [1] Optimizing the data-dependent kernel under a unified kernel optimization framework
    Chen, Bo
    Liu, Hongwei
    Bao, Zheng
    [J]. PATTERN RECOGNITION, 2008, 41 (06) : 2107 - 2119
  • [2] A criterion for learning the data-dependent kernel for classification
    Li, Jun-Bao
    Chu, Shu-Chuan
    Pan, Jeng-Shyang
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 365 - +
  • [3] Generalized Multiple Kernel Learning With Data-Dependent Priors
    Mao, Qi
    Tsang, Ivor W.
    Gao, Shenghua
    Wang, Li
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (06) : 1134 - 1148
  • [4] Data-dependent kernel machines for Microarray data classification
    Xiong, Huilin
    Zhang, Ya
    Chen, Xue-Wen
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (04) : 583 - 595
  • [5] Data-dependent multiple kernel learning algorithm based on soft-grouping
    Wang, Qingchao
    Fu, Guangyuan
    Li, Linlin
    Wang, Hongqiao
    Li, Yongqiang
    [J]. PATTERN RECOGNITION LETTERS, 2018, 112 : 111 - 117
  • [6] Principal Composite Kernel Feature Analysis: Data-Dependent Kernel Approach
    Motai, Yuichi
    Yoshida, Hiroyuki
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (08) : 1863 - 1875
  • [7] Multiple data-dependent kernel for classification of hyperspectral images
    He, Zhi
    Li, Junbao
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1118 - 1135
  • [8] Large-Scale Data-Dependent Kernel Approximation
    Ionescu, Catalin
    Popa, Alin-Ionut
    Sminchisescu, Cristian
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 19 - 27
  • [9] Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring
    Shao, Ji-Dong
    Rong, Gang
    Lee, Jong Min
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2009, 87 (11A): : 1471 - 1480
  • [10] DATA-DEPENDENT BANDWIDTH CHOICE FOR A GRADE DENSITY KERNEL ESTIMATE
    CWIK, J
    MIELNICZUK, J
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 16 (05) : 397 - 405