Calogero-Moser and Toda systems for twisted and untwisted affine Lie algebras

被引:28
|
作者
D'Hoker, E
Phong, DH
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(98)00569-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The elliptic Calogero-Moser Hamiltonian and Lax pair associated with a general simple Lie algebra G are shown to scale to the (affine) Toda Hamiltonian and Lax pair. The limit consists in taking the elliptic modulus tau and the Calogero-Moser couplings m to infinity, while keeping fixed the combination M = m e(i pi delta tau) for some exponent delta. Critical scaling limits arise when 1/delta equals the-Coxeter number or the dual Coxeter number for the untwisted and twisted Calogero-Moser systems respectively; the limit consists then of the Toda system for the affine Lie algebras G((1)) and (G((1)))(boolean OR). The limits of the untwisted or twisted Calogero-Moser system, for delta less than these critical values, but non-zero, consists of the ordinary Toda system, while for delta = 0, it consists of the trigonometric Calogero-Moser systems for the algebras G and G(boolean OR) respectively. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:611 / 640
页数:30
相关论文
共 50 条