Remarks on the spectrum of a non-local Dirichlet problem

被引:1
|
作者
Benguria, Rafael D. [1 ]
Pereira, Marcone C. [2 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Fis, Casilla 306, Santiago 22, Chile
[2] IME Univ Sao Paulo, Dept Matemat Aplicada, Rua Matao 1010, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
45C05 (primary); 45A05 (secondary); INEQUALITIES;
D O I
10.1112/blms.12552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we analyse the spectrum of non-local Dirichlet problems with non-singular kernels in bounded open sets. The novelty is twofold. First we study the continuity of eigenvalues with respect to domain perturbation via Lebesgue measure. Next, under additional smooth conditions on the kernel and domain, we prove differentiability of simple eigenvalues computing their first derivative discussing extremum problems for eigenvalues.
引用
收藏
页码:1898 / 1915
页数:18
相关论文
共 50 条
  • [21] A non-local semilinear eigenvalue problem
    Franzina, Giovanni
    Licheri, Danilo
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2193 - 2221
  • [22] On a non-local problem for irregular equations
    Kornienko, VV
    [J]. SBORNIK MATHEMATICS, 2000, 191 (11-12) : 1607 - 1633
  • [23] A non-local semilinear eigenvalue problem
    Giovanni Franzina
    Danilo Licheri
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 2193 - 2221
  • [24] Remarks on entanglement measures and non-local state distinguishability
    Eisert, J
    Audenaert, K
    Plenio, MB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5605 - 5615
  • [25] ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (12) : 6397 - 6441
  • [26] Heat kernels and non-local Dirichlet forms on ultrametric spaces
    Bendikov, Alexander
    Grigor'yan, Alexander
    Hu, Eryan
    Hu, Jiaxin
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (01) : 399 - 461
  • [27] ON DUAL GENERATORS FOR NON-LOCAL SEMI-DIRICHLET FORMS
    Uemura, Toshihiro
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2014, 34 (02): : 199 - 214
  • [28] Non-perturbative spectrum of non-local gravity
    Calcagni, Gianluca
    Modesto, Leonardo
    Nardelli, Giuseppe
    [J]. PHYSICS LETTERS B, 2019, 795 : 391 - 397
  • [29] Elliptic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 1 - 42
  • [30] A SIMPLE APPROACH TO FUNCTIONAL INEQUALITIES FOR NON-LOCAL DIRICHLET FORMS
    Wang, Jian
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 503 - 513