A non-local semilinear eigenvalue problem

被引:0
|
作者
Giovanni Franzina
Danilo Licheri
机构
[1] Istituto per le Applicazioni del Calcolo “M. Picone”,Dipartimento di Matematica e Informatica
[2] Consiglio Nazionale delle Ricerche,undefined
[3] Università degli Studi di Cagliari,undefined
关键词
Eigenvalues; Constrained critical points; Lane–Emden equation; 35P30; 49R05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that positive solutions of the fractional Lane–Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré’s inequality on all open sets, and are isolated in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.
引用
收藏
页码:2193 / 2221
页数:28
相关论文
共 50 条