A non-local semilinear eigenvalue problem

被引:0
|
作者
Giovanni Franzina
Danilo Licheri
机构
[1] Istituto per le Applicazioni del Calcolo “M. Picone”,Dipartimento di Matematica e Informatica
[2] Consiglio Nazionale delle Ricerche,undefined
[3] Università degli Studi di Cagliari,undefined
关键词
Eigenvalues; Constrained critical points; Lane–Emden equation; 35P30; 49R05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that positive solutions of the fractional Lane–Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré’s inequality on all open sets, and are isolated in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.
引用
收藏
页码:2193 / 2221
页数:28
相关论文
共 50 条
  • [21] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [22] On the Non-local Problem for a Boussinesq Type Equations
    Dekhkonov, Kh. T.
    Fayziev, Yu. E.
    Ashurov, R. R.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 1023 - 1031
  • [23] A Resonance Problem for Non-Local Elliptic Operators
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (04): : 411 - 431
  • [24] Optimization of the shape for a non-local control problem
    Cheng, Zhiwei
    Mikayelyan, Hayk
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2482 - 2501
  • [25] The complement value problem for non-local operators
    Sun, Wei
    [J]. STOCHASTICS AND DYNAMICS, 2020, 20 (03)
  • [26] NON-LOCAL CHARGED FIELDS AND THE CONFINEMENT PROBLEM
    SZLACHANYI, K
    [J]. PHYSICS LETTERS B, 1984, 147 (4-5) : 335 - 338
  • [27] Galerkin method applied for a non-local problem
    Department of Mathematics, Faculty of Sciences, Annaba University, Algeria
    不详
    [J]. Int. J. Appl. Math. Stat., D10 (63-71):
  • [28] Error estimates for a non-local thermistor problem
    Sidi Ammi, Moulay Rchid
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1166 - 1171
  • [29] Remarks on a non-local boundary value problem
    Webb, J. R. L.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 1075 - 1077
  • [30] Asymptotic behaviour for a non-local parabolic problem
    Liu Qilin
    Liang Fei
    Li Yuxiang
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2009, 20 : 247 - 267