On parafermion vertex algebras of sl(2) and sl(3) at level-3/2

被引:6
|
作者
Adamovic, Drazen [1 ]
Milas, Antun [2 ]
Wang, Qing [3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] SUNY Albany, Dept Math & Stat, 1400 Washington Ave, Albany, NY 12222 USA
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Vertex algebra; W-algebra; parafermion algebra; CONFORMAL FIELD-THEORIES; W-ALGEBRAS; THETA-FUNCTIONS; LIE-ALGEBRAS; REPRESENTATIONS; MODULES; REALIZATION;
D O I
10.1142/S0219199720500868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study parafermion vertex algebras N-3/2 (sl(2)) and N-3/2 (sl(3)). Using the isomorphism between N-3/2 (sl(3)) and the logarithmic vertex algebra W-0(2)(A2) from [D. Adamovic, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra A(2)((1)), Transform. Groups 21(2) (2016) 299-327], we show that these parafermion vertex algebras are infinite direct sums of irreducible modules for the Zamolodchikov algebra W(2,3) of central charge c = -10, and that N-3/2(sl(3)) is a direct sum of irreducible N-3/2(sl(2))-modules. As a byproduct, we prove certain conjectures about the vertex algebra W-0(p)(A2). We also obtain a vertex-algebraic proof of the irreducibility of a family of W(2, 3)(c) modules at c = -10.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] CERTAIN REPRESENTATIONS OF SL(2) LIE ALGEBRAS
    ARNAL, D
    PINCZON, G
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (21): : 1369 - &
  • [22] On Description of Leibniz Algebras Corresponding to sl 2
    Omirov, B. A.
    Rakhimov, I. S.
    Turdibaev, R. M.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1507 - 1519
  • [23] Is the group SL (6, ℤ) (2, 3)-generated?
    Vsemirnov M.A.
    [J]. Journal of Mathematical Sciences, 2007, 140 (5) : 660 - 675
  • [24] The cohomology of SL(3,Z[1/2])
    Henn, HW
    [J]. K-THEORY, 1999, 16 (04): : 299 - 359
  • [25] THE CONSTRUCTION OF SL(2,3)-POLYNOMIALS
    HEIDER, FP
    KOLVENBACH, P
    [J]. JOURNAL OF NUMBER THEORY, 1984, 19 (03) : 392 - 411
  • [26] Demazure modules and vertex models: The sl(2) case
    [J]. J Math Phys, 3 (1601):
  • [27] Triangular decomposition of SL3 skein algebras
    Higgins, Vijay
    [J]. QUANTUM TOPOLOGY, 2023, 14 (01) : 1 - 63
  • [28] Exchange relations of level-two vertex operators of Uq(sl2)
    Yang, WL
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (06): : 901 - 916
  • [29] Coinvariant algebras of finite subgroups of SL(3, C)
    Gomi, Y
    Nakamura, I
    Shinoda, K
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (03): : 495 - 528
  • [30] LIE ALGEBRAS WITH PRESCRIBED sl3 DECOMPOSITION
    Benkart, Georgia
    Elduque, Alberto
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2627 - 2638