On parafermion vertex algebras of sl(2) and sl(3) at level-3/2

被引:6
|
作者
Adamovic, Drazen [1 ]
Milas, Antun [2 ]
Wang, Qing [3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] SUNY Albany, Dept Math & Stat, 1400 Washington Ave, Albany, NY 12222 USA
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Vertex algebra; W-algebra; parafermion algebra; CONFORMAL FIELD-THEORIES; W-ALGEBRAS; THETA-FUNCTIONS; LIE-ALGEBRAS; REPRESENTATIONS; MODULES; REALIZATION;
D O I
10.1142/S0219199720500868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study parafermion vertex algebras N-3/2 (sl(2)) and N-3/2 (sl(3)). Using the isomorphism between N-3/2 (sl(3)) and the logarithmic vertex algebra W-0(2)(A2) from [D. Adamovic, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra A(2)((1)), Transform. Groups 21(2) (2016) 299-327], we show that these parafermion vertex algebras are infinite direct sums of irreducible modules for the Zamolodchikov algebra W(2,3) of central charge c = -10, and that N-3/2(sl(3)) is a direct sum of irreducible N-3/2(sl(2))-modules. As a byproduct, we prove certain conjectures about the vertex algebra W-0(p)(A2). We also obtain a vertex-algebraic proof of the irreducibility of a family of W(2, 3)(c) modules at c = -10.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] On vertex operator algebras as sl(2)-modules
    Dong, CY
    Lin, ZZ
    Mason, G
    [J]. GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 349 - 362
  • [2] Poincare and sl(2) algebras of order 3
    Goze, M.
    de Traubenberg, M. Rausch
    Tanasa, A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [3] PERMUTATION ORBIFOLDS OF sl2 VERTEX OPERATOR ALGEBRAS
    Milas, Antun
    Penn, Michael
    [J]. GLASNIK MATEMATICKI, 2020, 55 (02) : 277 - 300
  • [4] Sigma involutions associated with parafermion vertex operator algebra K(sl2, k)
    Lam, Ching Hung
    Yamada, Hiromichi
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6780 - 6819
  • [5] Representations of Z2-orbifold of the parafermion vertex operator algebra K(sl2, k)
    Jiang, Cuipo
    Wang, Qing
    [J]. JOURNAL OF ALGEBRA, 2019, 529 : 174 - 195
  • [6] Null fields realizations of W-3 from W(sl(4),sl(3)) and W(sl(3 backslash 1), sl(3)) algebras
    Bellucci, S
    Krivonos, S
    Sorin, A
    [J]. PHYSICS LETTERS B, 1996, 366 (1-4) : 104 - 112
  • [7] ELECTROMAGNETIC VERTEX IN SL(2,C)
    BEBIE, H
    [J]. HELVETICA PHYSICA ACTA, 1968, 41 (02): : 239 - &
  • [8] The W(sl(N+3), sl(3)) algebras and their contractions to W-3
    Bellucci, S
    Krivonos, S
    Sorin, A
    [J]. PHYSICS LETTERS B, 1997, 392 (3-4) : 350 - 359
  • [9] Product theorems in SL2 and SL3
    Chang, Mei-Chu
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (01) : 1 - 25
  • [10] Inductive algebras for SL(2,R)
    Steger, T
    Vemuri, MK
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2005, 49 (01) : 139 - 151