Efficient sub-pixel convolutional neural network for terahertz image super-resolution

被引:21
|
作者
Ruan, Haihang [1 ,2 ]
Tan, Zhiyong [1 ,2 ]
Chen, Liangtao [1 ,3 ]
Wan, Wenjain [1 ]
Cao, Juncheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Lab Terahertz Solid State Technol, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
QUALITY ASSESSMENT;
D O I
10.1364/OL.454267
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz waves are electromagnetic waves located at 0.1-10 THz, and terahertz imaging technology can be applied to security inspection, biomedicine, non-destructive testing of materials, and other fields. At present, terahertz images have unclear data and rough edges. Therefore, improving the resolution of terahertz images is one of the current hot research topics. This paper proposes an efficient terahertz image super-resolution model, which is used to extract low-resolution (LR) image features and learn the mapping of LR images to high-resolution (HR) images, and then introduce an attention mechanism to let the network pay attention to more information features. Finally, we use sub-pixel convolution to learn a set of scaling filters to upgrade the final LR feature map to an HR output, which not only reduces the model complexity, but also improves the quality of the terahertz image. The resolution reaches 31.67 db on the peak signal-to-noise ratio (PSNR) index and 0.86 on the structural similarity (SSIM) index. Experiments show that the efficient sub-pixel convolutional neural network used in this article achieves better accuracy and visual improvement compared with other terahertz image super-resolution algorithms. (C) 2022 Optica Publishing Group .
引用
收藏
页码:3115 / 3118
页数:4
相关论文
共 50 条
  • [21] MobileSR: Efficient Convolutional Neural Network for Super-resolution
    Zhang, Lulu
    Li, HuiYong
    Liu, Xuefeng
    Niu, Jianwei
    Wu, Jiyan
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [22] RGB-IR Cross Input and Sub-Pixel Upsampling Network for Infrared Image Super-Resolution
    Du, Juan
    Zhou, Huixin
    Qian, Kun
    Tan, Wei
    Zhang, Zhe
    Gu, Lin
    Yu, Yue
    [J]. SENSORS, 2020, 20 (01)
  • [23] Efficient document-image super-resolution using convolutional neural network
    Ram Krishna Pandey
    A G Ramakrishnan
    [J]. Sādhanā, 2018, 43
  • [24] Efficient document-image super-resolution using convolutional neural network
    Pandey, Ram Krishna
    Ramakrishnan, A. G.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (02):
  • [25] Image super-resolution reconstruction based on sub-pixel registration and iterative back projection
    Qin, Fengqing
    He, Xiaohai
    Wu, Wei
    Yang, Xiaomin
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 277 - 280
  • [26] SUB-PIXEL MAPPING WITH HYPERSPECTRAL IMAGES USING SUPER-RESOLUTION
    Gaur, S.
    Buddhiraju, K. M.
    Porwal, A.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2459 - 2462
  • [27] Sub-pixel Layout for Super-Resolution with Images in the Octic Group
    Shi, Boxin
    Zhao, Hang
    Ben-Ezra, Moshe
    Yeung, Sai-Kit
    Fernandez-Cull, Christy
    Shepard, R. Hamilton
    Barsi, Christopher
    Raskar, Ramesh
    [J]. COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 : 250 - 264
  • [28] Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Jia, Sen
    Zhu, Shuangzhao
    Wang, Zhihao
    Xu, Meng
    Wang, Weixi
    Guo, Yujuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    [J]. VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [30] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719