MobileSR: Efficient Convolutional Neural Network for Super-resolution

被引:0
|
作者
Zhang, Lulu [1 ,2 ,3 ]
Li, HuiYong [1 ,2 ,3 ]
Liu, Xuefeng [1 ,2 ,3 ]
Niu, Jianwei [1 ,2 ,3 ]
Wu, Jiyan [1 ,2 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Beijing, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Res Inst, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Parallel-group convolution; light-weight network; super-resolution;
D O I
10.1109/GLOBECOM42002.2020.9322623
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The existing deep CNN models on single image super-resolution processing are computationally-intensive in terms of memory usage and training time. In resources-limited platforms, it is desirable to consider developing lightweight models for super-resolution tasks. This paper proposes a parallel-group convolution, which uses 25% computation of the standard convolutions. With parallel-group convolutions, we develop an efficient light-weight convolutional neural network named MobileSR for super-resolution. Experimental results show that our proposed method achieves appreciable improvements over the state-of-the-art models with approximately 75% size reduction. The source code is available at https://github.com/DestinyK/MobileSR.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407
  • [2] Efficient document-image super-resolution using convolutional neural network
    Ram Krishna Pandey
    A G Ramakrishnan
    [J]. Sādhanā, 2018, 43
  • [3] Efficient document-image super-resolution using convolutional neural network
    Pandey, Ram Krishna
    Ramakrishnan, A. G.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (02):
  • [4] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    [J]. PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [5] A SUPER-RESOLUTION MAPPING USING A CONVOLUTIONAL NEURAL NETWORK
    Kasetkasem, Teerasit
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3077 - 3080
  • [6] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    [J]. 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [7] Convolutional Neural Network for Smoke Image Super-Resolution
    Liu, Maoshen
    Gu, Ke
    Qiao, Junfei
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [8] SCRSR: An efficient recursive convolutional neural network for fast and accurate image super-resolution
    Lin, Daoyu
    Xu, Guangluan
    Xu, Wenjia
    Wang, Yang
    Sun, Xian
    Fu, Kun
    [J]. NEUROCOMPUTING, 2020, 398 : 399 - 407
  • [9] Efficient sub-pixel convolutional neural network for terahertz image super-resolution
    Ruan, Haihang
    Tan, Zhiyong
    Chen, Liangtao
    Wan, Wenjain
    Cao, Juncheng
    [J]. OPTICS LETTERS, 2022, 47 (12) : 3115 - 3118
  • [10] Efficient multiquality super-resolution using a deep convolutional neural network for an FPGA implementation
    Kim, Min Beom
    Lee, Sanglyn
    Kim, Ilho
    Hong, Hee Jung
    Kim, Chang Gone
    Yoon, Soo Young
    [J]. JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2020, 28 (05) : 428 - 439