Efficient multiquality super-resolution using a deep convolutional neural network for an FPGA implementation

被引:1
|
作者
Kim, Min Beom [1 ]
Lee, Sanglyn [1 ]
Kim, Ilho [1 ]
Hong, Hee Jung [1 ]
Kim, Chang Gone [1 ]
Yoon, Soo Young [1 ]
机构
[1] LG Display R&D Ctr, LG Sci Pk, Seoul 6853, South Korea
关键词
deep learning; super-resolution;
D O I
10.1002/jsid.902
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an efficient deep convolutional neural network for a super-resolution which is capable of multiple-quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to compress the neural network.
引用
收藏
页码:428 / 439
页数:12
相关论文
共 50 条
  • [1] FPGA Implementation of a Real-Time Super-Resolution System Using a Convolutional Neural Network
    Manabe, Taito
    Shibata, Yuichiro
    Oguri, Kiyoshi
    [J]. 2016 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2016, : 249 - 252
  • [2] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network
    Song, Xibin
    Dai, Yuchao
    Qin, Xueying
    [J]. COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 360 - 376
  • [3] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    [J]. 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [4] MobileSR: Efficient Convolutional Neural Network for Super-resolution
    Zhang, Lulu
    Li, HuiYong
    Liu, Xuefeng
    Niu, Jianwei
    Wu, Jiyan
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [5] Computed tomography super-resolution using deep convolutional neural network
    Park, Junyoung
    Hwang, Donghwi
    Kim, Kyeong Yun
    Kang, Seung Kwan
    Kim, Yu Kyeong
    Lee, Jae Sung
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (14):
  • [6] Super-Resolution PET Using A Very Deep Convolutional Neural Network
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Kim, Kyungsang
    Gong, Kuang
    El Fakhri, Georges
    Li, Quanzheng
    Dutta, Joyita
    [J]. 2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [7] Hyperspectral image super-resolution using deep convolutional neural network
    Li, Yunsong
    Hu, Jing
    Zhao, Xi
    Xie, Weiying
    Li, JiaoJiao
    [J]. NEUROCOMPUTING, 2017, 266 : 29 - 41
  • [8] A Deep Convolutional Neural Network with Selection Units for Super-Resolution
    Choi, Jae-Seok
    Kim, Munchurl
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1150 - 1156
  • [9] A SUPER-RESOLUTION MAPPING USING A CONVOLUTIONAL NEURAL NETWORK
    Kasetkasem, Teerasit
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3077 - 3080
  • [10] Efficient document-image super-resolution using convolutional neural network
    Pandey, Ram Krishna
    Ramakrishnan, A. G.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (02):