Extendability and the (partial derivative)over-bar operator on the Hartogs triangle

被引:0
|
作者
Burchard, Almut [1 ]
Flynn, Joshua [2 ,3 ]
Lu, Guozhen [2 ,3 ]
Shaw, Mei-Chi [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06290 USA
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
加拿大自然科学与工程研究理事会;
关键词
PSEUDO-CONVEX MANIFOLDS; HARMONIC INTEGRALS; REGULARITY; DOMAINS; COMPLEX; BOUNDARY;
D O I
10.1007/s00209-022-03008-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that the Hartogs triangle T in C-2 is a uniform domain. This implies that the Hartogs triangle is a Sobolev extension domain. Furthermore, the weak and strong maximal extensions of the Cauchy-Riemann operator agree on the Hartogs triangle. These results have numerous applications. Among other things, they are used to study the Dolbeault cohomology groups with Sobolev coefficients on the complement of T.
引用
收藏
页码:2771 / 2792
页数:22
相关论文
共 50 条
  • [41] On some spectral properties of the weighted (partial derivative)over-bar-Neumann operator
    Berger, Franz
    Haslinger, Friedrich
    KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (02) : 441 - 453
  • [42] Measurement of the semileptonic decays (B)over-bar → Dτ-(ν)over-barτ and (B)over-bar → D*τ-(ν)over-barτ
    Aubert, B.
    Bona, M.
    Karyotakis, Y.
    Lees, J. P.
    Poireau, V.
    Prencipe, E.
    Prudent, X.
    Tisserand, V.
    Tico, J. Garra
    Grauges, E.
    Lopez, L.
    Palano, A.
    Pappagallo, M.
    Eigen, G.
    Stugu, B.
    Sun, L.
    Abrams, G. S.
    Battaglia, M.
    Brown, D. N.
    Jacobsen, R. G.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Lynch, G.
    Osipenkov, I. L.
    Ronan, M. T.
    Tackmann, K.
    Tanabe, T.
    Hawkes, C. M.
    Soni, N.
    Watson, A. T.
    Koch, H.
    Schroeder, T.
    Asgeirsson, D. J.
    Fulsom, B. G.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    Barrett, M.
    Khan, A.
    Blinov, V. E.
    Bukin, A. D.
    Buzykaev, A. R.
    Druzhinin, V. P.
    Golubev, V. B.
    Onuchin, A. P.
    Serednyakov, S. I.
    Skovpen, Yu. I.
    Solodov, E. P.
    Todyshev, K. Yu.
    Bondioli, M.
    PHYSICAL REVIEW D, 2009, 79 (09)
  • [43] Exotic open-flavor bc(q)over-bar(q)over-bar, bc(s)over-bar(s)over-bar and qc(q)over-bar(b)over-bar, sc(s)over-bar(b)over-bar tetraquark states
    Chen, Wei
    Steele, T. G.
    Zhu, Shi-Lin
    PHYSICAL REVIEW D, 2014, 89 (05):
  • [44] Partial wave analysis of J/ψ → p(p)over-barπ0 and measurement of J/ψ → p(p)over-barη, p(p)over-barη′
    Yang Hong-Xun
    CHINESE PHYSICS C, 2009, 33 (12) : 1331 - 1335
  • [45] SOME COMMENTS ON N(N)OVER-BAR SCATTERING, N(N)OVER-BAR POTENTIALS AND N(N)OVER-BAR PARTIAL-WAVES
    BRADAMANTE, F
    HESS, R
    RICHARD, JM
    PHYSICS OF ATOMIC NUCLEI, 1994, 57 (09) : 1557 - 1558
  • [46] Measurements of the Partial Branching Fraction for (B)over-bar→ Xul (v)over-bar and the Determination of |Vub|
    Sigamani, Michael
    35TH INTERNATIONAL CONFERENCE OF HIGH ENERGY PHYSICS (ICHEP 2010), 2010,
  • [47] A L2 estimate for the minimal solution of (partial derivative)over-bar on the unit ball
    Phung Trong Thuc
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [48] HOLDER ESTIMATES FOR LOCAL SOLUTIONS FOR (PARTIAL-DERIVATIVE) OVER-BAR ON A CLASS OF NONPSEUDOCONVEX DOMAINS
    HO, LH
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (02) : 593 - 607
  • [49] On ((ε)over-bar, (ε)over-bar ∨ (q)over-bar)-Fuzzy Filters of Residuated Lattices
    Zhu, Yi-quan
    Zhan, Jian-ming
    Jun, Young Bae
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2010, VOL 2, 2010, 82 : 631 - +
  • [50] Characterizations of hemirings by ((∈)over-bar, (∈)over-bar ∨ (q)over-bar)-fuzzy ideals
    Shabir, Muhammad
    Nawaz, Yasir
    Mahmood, Tahir
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 : S93 - S103