Extendability and the (partial derivative)over-bar operator on the Hartogs triangle

被引:0
|
作者
Burchard, Almut [1 ]
Flynn, Joshua [2 ,3 ]
Lu, Guozhen [2 ,3 ]
Shaw, Mei-Chi [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06290 USA
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
加拿大自然科学与工程研究理事会;
关键词
PSEUDO-CONVEX MANIFOLDS; HARMONIC INTEGRALS; REGULARITY; DOMAINS; COMPLEX; BOUNDARY;
D O I
10.1007/s00209-022-03008-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that the Hartogs triangle T in C-2 is a uniform domain. This implies that the Hartogs triangle is a Sobolev extension domain. Furthermore, the weak and strong maximal extensions of the Cauchy-Riemann operator agree on the Hartogs triangle. These results have numerous applications. Among other things, they are used to study the Dolbeault cohomology groups with Sobolev coefficients on the complement of T.
引用
收藏
页码:2771 / 2792
页数:22
相关论文
共 50 条
  • [31] HOLDERIAN REGULARITY OF THE PSEUDODIFFERENTIAL OPERATOR ON THE HARTOGS TRIANGLE
    CHAUMAT, J
    CHOLLET, AM
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) : 867 - 882
  • [32] Integrable systems for (partial derivative)over-bar operators of non-zero index
    Konopelchenko, B
    Alonso, LM
    PHYSICS LETTERS A, 1997, 236 (5-6) : 431 - 438
  • [33] The (partial derivative)over-bar-Equation on the Hartogs Triangles in C2 and CP2
    Shaw, Mei-Chi
    BERGMAN KERNEL AND RELATED TOPICS, SCV XXIII, 2024, 447 : 305 - 319
  • [34] A (partial derivative)over-bar-theoretical proof of Hartogs' Extension Theorem on stein spaces with isolated singularities
    Ruppenthal, J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) : 1127 - 1132
  • [35] Measurements of partial branching fractions for (B)over-bar → Xul(ν)over-bar and determination of |Vub|
    Aubert, B.
    Bona, M.
    Boutigny, D.
    Karyotakis, Y.
    Lees, J. P.
    Poireau, V.
    Prudent, X.
    Tisserand, V.
    Zghiche, A.
    Tico, J. Garra
    Grauges, E.
    Lopez, L.
    Palano, A.
    Pappagallo, M.
    Eigen, G.
    Stugu, B.
    Sun, L.
    Abrams, G. S.
    Battaglia, M.
    Brown, D. N.
    Button-Shafer, J.
    Cahn, R. N.
    Groysman, Y.
    Jacobsen, R. G.
    Kadyk, J. A.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Kukartsev, G.
    Pegna, D. Lopes
    Lynch, G.
    Mir, L. M.
    Orimoto, T. J.
    Osipenkov, I. L.
    Ronan, M. T.
    Tackmann, K.
    Tanabe, T.
    Wenzel, W. A.
    Sanchez, P. Del Amo
    Hawkes, C. M.
    Watson, A. T.
    Koch, H.
    Schroeder, T.
    Walker, D.
    Asgeirsson, D. J.
    Cuhadar-Donszelmann, T.
    Fulsom, B. G.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    Barrett, M.
    PHYSICAL REVIEW LETTERS, 2008, 100 (17)
  • [36] (B)over-bar → Dτ(ν)over-barτ vs. (B)over-bar → Dμ(ν)over-barμ
    Becirevic, Damir
    Kosnik, Nejc
    Tayduganov, Andrey
    PHYSICS LETTERS B, 2012, 716 (01) : 208 - 213
  • [37] Exotic QQ(q)over-bar(q)over-bar, QQ(q)over-bar(s)over-bar, and QQ(s)over-bar(s)over-bar states
    Du, Meng-Lin
    Chen, Wei
    Chen, Xiao-Lin
    Zhu, Shi-Lin
    PHYSICAL REVIEW D, 2013, 87 (01):
  • [38] Testing the molecular nature of the Ω (2012) with the ψ (3770) → (Ω)over-bar(K)over-barΞ and ψ (3770) → (Ω)over-bar(K)over-barΞ* (1530) ((Ω)over-bar(K)over-barπΞ) reactions
    Song, Jing
    Liang, Wei-Hong
    Xiao, Chu-Wen
    Dias, Jorgivan Morais
    Oset, Eulogio
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (12):
  • [39] ((∈)over-bar,(∈)over-bar V (q)over-bar(λ,μ))-fuzzy subgroups
    Guo, Ziyan
    Liao, Zuhua
    Guo, Jianfu
    Proceedings of the Sixth International Conference on Information and Management Sciences, 2007, 6 : 570 - 574
  • [40] The Z → c(c)over-bar → γγ*, Z → b(b)over-bar → γγ* triangle diagrams and the Z → γψ, Z → γυ decays
    Achasov, N. N.
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (03) : 437 - 445