Random fractional Fourier transform

被引:119
|
作者
Liu, Zhengjun [1 ]
Liu, Shutian [1 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
关键词
D O I
10.1364/OL.32.002088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel random fractional Fourier transform by randomizing the transform kernel function of the conventional fractional Fourier transform. The random fractional Fourier transform inherits the excellent mathematical properties from the fractional Fourier transform and can be easily implemented in optics. As a primary application the random fractional Fourier transform can be directly used in optical image encryption and decryption. The double phase encoding image encryption schemes can thus be modeled with cascaded random fractional Fourier transformers. (C) 2007 Optical Society of America.
引用
收藏
页码:2088 / 2090
页数:3
相关论文
共 50 条
  • [41] A discrete fractional random transform
    Liu, ZJ
    Zhao, HF
    Liu, ST
    OPTICS COMMUNICATIONS, 2005, 255 (4-6) : 357 - 365
  • [42] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [43] The Fractional Fourier Transform and Harmonic Oscillation
    M. Alper Kutay
    Haldun M. Ozaktas
    Nonlinear Dynamics, 2002, 29 : 157 - 172
  • [44] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [45] Fractional Fourier transform and its applications
    Xidian Univ, Xi'an, China
    Tien Tzu Hsueh Pao, 12 (60-65):
  • [46] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [47] A unified framework for the fractional Fourier transform
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3206 - 3219
  • [48] THE FINITE FIELD FRACTIONAL FOURIER TRANSFORM
    Lima, Juliano B.
    Campello de Souza, Ricardo M.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3670 - 3673
  • [49] Image encryption and the fractional Fourier transform
    Hennelly, BM
    Sheridan, JT
    OPTIK, 2003, 114 (06): : 251 - 265
  • [50] Fractional Fourier transform of Airy beams
    Guoquan Zhou
    Ruipin Chen
    Xiuxiang Chu
    Applied Physics B, 2012, 109 : 549 - 556