Robust and sparse label propagation for graph-based semi-supervised classification

被引:7
|
作者
Hua, Zhiwen [1 ]
Yang, Youlong [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Graph construction; Label propagation; Denoising; l(2 1)-norm regularization; CONSTRUCTION;
D O I
10.1007/s10489-021-02360-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional graph-based semi-supervised classification algorithms are usually composed of two independent parts: graph construction and label propagation. However, the predefined graph may not be optimal for label propagation, and these methods usually use the raw data containing noise directly, which may reduce the accuracy of the algorithm. In this paper, we propose a robust label prediction model called the robust and sparse label propagation (RSLP) algorithm. First, our RSLP algorithm decomposes the raw data into a low-rank clean part and a sparse noise part, and performs graph construction and label propagation in the clean data space. Second, RSLP seamlessly combines the processes of graph construction and label propagation. By jointly minimizing the sample reconstruction error and the label reconstruction error, the resulting graph structure is globally optimal. Third, the proposed RSLP performs l(2,1)-norm regularization on the predicted label matrix, thereby enhancing the sparsity and discrimination of soft labels. We also analyze the connection between RSLP and other related algorithms, including label propagation algorithms, the robust graph construction method, and principal component analysis. A series of experiments on several benchmark datasets show that our RSLP algorithm achieves comparable and even higher accuracy than other state-of-the-art algorithms.
引用
收藏
页码:3337 / 3351
页数:15
相关论文
共 50 条
  • [41] Dual graph wavelet neural network for graph-based semi-supervised classification
    Hu, Kekun
    Dong, Gang
    Zhao, Yaqian
    Li, Rengang
    Jiang, Dongdong
    Chao, Yinyin
    Liu, Haiwei
    Ge, Yuan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5177 - 5188
  • [42] Cyclic label propagation for graph semi-supervised learning
    Li, Zhao
    Liu, Yixin
    Zhang, Zhen
    Pan, Shirui
    Gao, Jianliang
    Bu, Jiajun
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (02): : 703 - 721
  • [43] Cyclic label propagation for graph semi-supervised learning
    Zhao Li
    Yixin Liu
    Zhen Zhang
    Shirui Pan
    Jianliang Gao
    Jiajun Bu
    World Wide Web, 2022, 25 : 703 - 721
  • [44] Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification
    Xu, Ge
    Wang, Houfeng
    2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS (WI-IAT WORKSHOPS 2012), VOL 3, 2012, : 132 - 136
  • [45] A graph-based semi-supervised learning algorithm for web page classification
    Liu, Rong
    Zhou, Jianzhong
    Liu, Ming
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, 2006, : 856 - +
  • [46] Graph-based Semi-supervised Learning with Manifold Preprocessing for Image Classification
    Gong, Yun-Chao
    Liu, Feng
    Chen, Chuanliang
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 391 - +
  • [47] A graph-based semi-supervised approach to classification learning in digital geographies
    Liu, Pengyuan
    De Sabbata, Stefano
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2021, 86
  • [48] Graph-based Active Learning for Semi-supervised Classification of SAR Data
    Miller, Kevin
    Mauro, Jack
    Setiadi, Jason
    Baca, Xoaquin
    Shi, Zhan
    Calder, Jeff
    Bertozzi, Andrea L.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXIX, 2022, 12095
  • [49] Progressive graph-based subspace transductive learning for semi-supervised classification
    Chen, Long
    Zhong, Zhi
    IET IMAGE PROCESSING, 2019, 13 (14) : 2753 - 2762
  • [50] A new graph-based semi-supervised method for surface defect classification
    Wang, Yucheng
    Gao, Liang
    Gao, Yiping
    Li, Xinyu
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2021, 68