Robust and sparse label propagation for graph-based semi-supervised classification

被引:7
|
作者
Hua, Zhiwen [1 ]
Yang, Youlong [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Graph construction; Label propagation; Denoising; l(2 1)-norm regularization; CONSTRUCTION;
D O I
10.1007/s10489-021-02360-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional graph-based semi-supervised classification algorithms are usually composed of two independent parts: graph construction and label propagation. However, the predefined graph may not be optimal for label propagation, and these methods usually use the raw data containing noise directly, which may reduce the accuracy of the algorithm. In this paper, we propose a robust label prediction model called the robust and sparse label propagation (RSLP) algorithm. First, our RSLP algorithm decomposes the raw data into a low-rank clean part and a sparse noise part, and performs graph construction and label propagation in the clean data space. Second, RSLP seamlessly combines the processes of graph construction and label propagation. By jointly minimizing the sample reconstruction error and the label reconstruction error, the resulting graph structure is globally optimal. Third, the proposed RSLP performs l(2,1)-norm regularization on the predicted label matrix, thereby enhancing the sparsity and discrimination of soft labels. We also analyze the connection between RSLP and other related algorithms, including label propagation algorithms, the robust graph construction method, and principal component analysis. A series of experiments on several benchmark datasets show that our RSLP algorithm achieves comparable and even higher accuracy than other state-of-the-art algorithms.
引用
收藏
页码:3337 / 3351
页数:15
相关论文
共 50 条
  • [31] Label Propagation Classification Based on Semi-supervised Affinity Propagation Algorithm
    Zhang Xiao-yan
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 476 - 481
  • [32] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [33] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [34] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [35] Semi-supervised multi-label classification using an extended graph-based manifold regularization
    Ding Li
    Scott Dick
    Complex & Intelligent Systems, 2022, 8 : 1561 - 1577
  • [36] Semi-supervised multi-label classification using an extended graph-based manifold regularization
    Li, Ding
    Dick, Scott
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (02) : 1561 - 1577
  • [37] Graph-based Semi-supervised Multi-label Learning Method
    Chen-Guang, Zhang
    Xia-Huan, Zhang
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1021 - 1025
  • [38] Graph-based Semi-Supervised Learning by Strengthening Local Label Consistency
    Li, Chen
    Peng, Xutan
    Peng, Hao
    Wu, Jia
    Wang, Lihong
    Yu, Philip S.
    Li, Jianxin
    Sun, Lichao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3201 - 3205
  • [39] Robust Graph Hyperparameter Learning for Graph Based Semi-supervised Classification
    Muandet, Krikamol
    Marukatat, Sanparith
    Nattee, Cholwich
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 98 - +
  • [40] Joint Label Propagation, Graph and Latent Subspace Estimation for Semi-supervised Classification
    Dornaika, Fadi
    Baradaaji, Abdullah
    COGNITIVE COMPUTATION, 2024, 16 (03) : 827 - 840