On Homogeneous Finsler Manifolds with Some Curvature Properties

被引:2
|
作者
Kamelaei, Farzaneh [1 ]
Tayebi, Akbar [2 ]
Najafi, Behzad [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
[2] Univ Qom, Dept Math, Fac Sci, Qom, Iran
[3] Amirkabir Univ Technol, Dept Math & Comp Sci, Hafez Ave, Tehran, Iran
关键词
H-curvature; Landsberg manifolds; R-quadratic manifolds; PROJECTIVE CLASS; METRICS;
D O I
10.1007/s41980-021-00664-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a rigidity result for homogeneous generalized Douglas-Weyl metrics of Landsberg-type. We show that such metrics have constant H-curvature along geodesics. Then, we prove that every homogeneous D-recurrent Finsler metric is a Douglas metric. It turns out that a homogeneous D-recurrent (alpha, beta)-metric is a Randers metric or Berwaldian metric, generalizing the result known only in the case of Douglas metrics. Finally, we show that homogeneous generalized isotropic L-reducible metrics are Randers metrics or L-reducible metrics.
引用
收藏
页码:2685 / 2697
页数:13
相关论文
共 50 条
  • [31] ON INTEGRAL RICCI CURVATURE AND TOPOLOGY OF FINSLER MANIFOLDS
    Wu, B. Y.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (11)
  • [32] Holomorphic Sectional Curvature of Complex Finsler Manifolds
    Wan, Xueyuan
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 194 - 216
  • [33] Holomorphic Sectional Curvature of Complex Finsler Manifolds
    Xueyuan Wan
    The Journal of Geometric Analysis, 2019, 29 : 194 - 216
  • [34] Kahler Finsler manifolds of constant holomorphic curvature
    Abate, M
    Patrizio, G
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (02) : 169 - 186
  • [35] On negatively curved Finsler manifolds of scalar curvature
    Mo, XH
    Shen, ZM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (01): : 112 - 120
  • [36] On Riemannian and Ricci curvatures of homogeneous Finsler manifolds
    Tayebi, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 73 - 90
  • [37] Killing fields and curvatures of homogeneous Finsler manifolds
    Hu, Zhiguang
    Deng, Shaoqiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 215 - 229
  • [38] ON THREE-DIMENSIONAL HOMOGENEOUS FINSLER MANIFOLDS
    Tayebi, Akbar
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 141 - 151
  • [39] HOMOGENEOUS FINSLER SPHERE WITH CONSTANT FLAG CURVATURE
    Xu, Ming
    HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (04): : 757 - 767
  • [40] HOMOGENEOUS MANIFOLDS WITH NEGATIVE CURVATURE
    AZENCOTT, R
    WILSON, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (08): : 561 - 562