On Homogeneous Finsler Manifolds with Some Curvature Properties

被引:2
|
作者
Kamelaei, Farzaneh [1 ]
Tayebi, Akbar [2 ]
Najafi, Behzad [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
[2] Univ Qom, Dept Math, Fac Sci, Qom, Iran
[3] Amirkabir Univ Technol, Dept Math & Comp Sci, Hafez Ave, Tehran, Iran
关键词
H-curvature; Landsberg manifolds; R-quadratic manifolds; PROJECTIVE CLASS; METRICS;
D O I
10.1007/s41980-021-00664-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a rigidity result for homogeneous generalized Douglas-Weyl metrics of Landsberg-type. We show that such metrics have constant H-curvature along geodesics. Then, we prove that every homogeneous D-recurrent Finsler metric is a Douglas metric. It turns out that a homogeneous D-recurrent (alpha, beta)-metric is a Randers metric or Berwaldian metric, generalizing the result known only in the case of Douglas metrics. Finally, we show that homogeneous generalized isotropic L-reducible metrics are Randers metrics or L-reducible metrics.
引用
收藏
页码:2685 / 2697
页数:13
相关论文
共 50 条
  • [21] Some curvature properties of spherically symmetric Finsler metrics
    Tayebi, Akbar
    Eslami, Faezeh
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,
  • [22] Some Curvature Properties of Finsler Warped Product Metrics
    Wu, Mengke
    Zhang, Xiaoling
    Sun, Lingen
    Han, Lingyue
    SYMMETRY-BASEL, 2023, 15 (08):
  • [23] Some examples of Finsler metrics with special curvature properties
    Guo, Shunzi
    Liu, Zhishuai
    Mo, Xiaohuan
    Yang, Chunhong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (12)
  • [24] On Hypersurfaces with Constant Mean Curvature in Finsler Manifolds
    Chen, Yali
    He, Qun
    Qian, Yantong
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [25] On the conformal scalar curvature equations on Finsler manifolds
    Shojaee, Neda
    Rezaii, Morteza MirMohammad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (01)
  • [26] The Schwarzian derivative on Finsler manifolds of constant curvature
    Bidabad, B.
    Sedighi, F.
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) : 346 - 357
  • [27] The Schwarzian derivative on Finsler manifolds of constant curvature
    B. Bidabad
    F. Sedighi
    Periodica Mathematica Hungarica, 2022, 84 : 346 - 357
  • [28] ON THE HOLOMORPHIC SECTIONAL CURVATURE OF COMPLEX FINSLER MANIFOLDS
    Wong, Pit-Mann
    Wu, Bing-Ye
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 415 - 433
  • [29] Finsler Manifolds with Positive Constant Flag Curvature
    Chang-wan Kim
    Jin-whan Yim
    Geometriae Dedicata, 2003, 98 : 47 - 56
  • [30] Finsler manifolds with positive constant flag curvature
    Kim, CW
    Yim, JW
    GEOMETRIAE DEDICATA, 2003, 98 (01) : 47 - 56