On Homogeneous Finsler Manifolds with Some Curvature Properties

被引:2
|
作者
Kamelaei, Farzaneh [1 ]
Tayebi, Akbar [2 ]
Najafi, Behzad [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
[2] Univ Qom, Dept Math, Fac Sci, Qom, Iran
[3] Amirkabir Univ Technol, Dept Math & Comp Sci, Hafez Ave, Tehran, Iran
关键词
H-curvature; Landsberg manifolds; R-quadratic manifolds; PROJECTIVE CLASS; METRICS;
D O I
10.1007/s41980-021-00664-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a rigidity result for homogeneous generalized Douglas-Weyl metrics of Landsberg-type. We show that such metrics have constant H-curvature along geodesics. Then, we prove that every homogeneous D-recurrent Finsler metric is a Douglas metric. It turns out that a homogeneous D-recurrent (alpha, beta)-metric is a Randers metric or Berwaldian metric, generalizing the result known only in the case of Douglas metrics. Finally, we show that homogeneous generalized isotropic L-reducible metrics are Randers metrics or L-reducible metrics.
引用
收藏
页码:2685 / 2697
页数:13
相关论文
共 50 条