NON-PARAMETRIC BAYESIAN INFERENCE FOR CHANGE POINT DETECTION IN NEURAL SPIKE TRAINS

被引:0
|
作者
Alt, Bastian [1 ]
Messer, Michael [2 ]
Roeper, Jochen [3 ]
Schneider, Gaby [2 ]
Koeppl, Heinz [1 ]
机构
[1] Tech Univ Darmstadt, Dept Elect Engn, Darmstadt, Germany
[2] Goethe Univ, Inst Math, Frankfurt, Germany
[3] Goethe Univ, Inst Neurophysiol, Frankfurt, Germany
关键词
Inhomogeneous Gamma Process; Bayesian Non-Parametrics; Neural Spike Trains; Change Points;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a model for point processes with gamma distributed increments. We assume a piecewise constant latent process controlling shape and scale of the distribution. For the discrete number of states of the latent process we use a non-parametric assumption by utilizing a Chinese restaurant process (CRP). For the inference of such inhomogeneous gamma processes with an unbounded number of states we do Bayesian inference using Markov Chain Monte Carlo. Finally, we apply the inference algorithm to simulated point processes and to empirical spike train recordings, which inherently possess non-stationary and non-Poissonian behavior.
引用
收藏
页码:258 / 262
页数:5
相关论文
共 50 条
  • [41] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [42] Multi-user detection using non-parametric Bayesian estimation by feed forward neural networks
    Dávid Tisza
    András Oláh
    János Levendovszky
    [J]. Telecommunication Systems, 2016, 63 : 65 - 75
  • [43] Multi-user detection using non-parametric Bayesian estimation by feed forward neural networks
    Tisza, David
    Olah, Andras
    Levendovszky, Janos
    [J]. TELECOMMUNICATION SYSTEMS, 2016, 63 (01) : 65 - 75
  • [44] Comparison of Error Bounds for Non-Parametric Dominant Point Detection
    Prasad, Dilip K.
    Quek, Chai
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [45] A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes
    Shalchyan, Vahid
    Farina, Dario
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 : 85 - 91
  • [46] RARE JAROSITE DETECTION IN CRISM IMAGERY BY NON-PARAMETRIC BAYESIAN CLUSTERING
    Dundar, Murat
    Ehlmann, Bethany L.
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [47] Non-Parametric Quickest Detection of a Change in the Mean of an Observation Sequence
    Liang, Yuchen
    Veeravalli, Venugopal V.
    [J]. 2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [48] Change-Point Tests for the Error Distribution in Non-parametric Regression
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) : 518 - 541
  • [49] NON-PARAMETRIC MULTIPLE CHANGE POINT ANALYSIS OF THE GLOBAL FINANCIAL CRISIS
    Allen, David E.
    McAleer, Michael
    Powell, Robert J.
    Singh, Abhay K.
    [J]. ANNALS OF FINANCIAL ECONOMICS, 2018, 13 (02)
  • [50] Non-parametric inference for balanced randomization designs
    Rukhin, Andrew L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 967 - 984