ON THE KORN INTERPOLATION AND SECOND INEQUALITIES IN THIN DOMAINS

被引:9
|
作者
Harutyunyan, D. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Korn interpolation inequality; Korn second inequality; thin domains; NONLINEAR ELASTICITY; 3-DIMENSIONAL ELASTICITY; CYLINDRICAL-SHELLS; GAMMA-CONVERGENCE; DERIVATION; MODEL; RIGIDITY; LIMIT;
D O I
10.1137/18M1167474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider shells of nonconstant thickness in three dimensional Euclidean space around surfaces which have bounded principal curvatures. We derive Korn's interpolation inequality (or the so-called first (and a half) inequality introduced in [Y. Grabovsky and D. Harutyunyan, SIAM T. Math. Anal., 46 (2014), pp. 3277-32951) and Korn's second inequality on such domains for u is an element of H-1 vector fields, imposing no boundary or normalization conditions on u. The constants in the estimates are asymptotically optimal in terms of the domain thickness h, with the leading order constant having the scaling h as h -> 0. This is the first work that determines the asymptotics of the optimal constant in the classical Korn second inequality for shells in terms of the domain thickness in almost full generality, the inequality being fulfilled for practically all thin domains Omega is an element of R-3 and all vector fields u is an element of H-1(Omega). Moreover, Korn's interpolation inequality is stronger than Korn's second inequality, and it reduces the problem of estimating the gradient del u in terms of the symmetrized gradient e(u), in particular, any linear geometric rigidity estimates for thin domains, to the easier problem of proving the corresponding Poincare-like estimates on the field u itself.
引用
收藏
页码:4964 / 4982
页数:19
相关论文
共 50 条
  • [31] Some Remarks on Korn Inequalities
    Alain DAMLAMIAN
    [J]. Chinese Annals of Mathematics,Series B, 2018, (02) : 335 - 344
  • [32] On Korn's inequalities on a surface
    Ciarlet, Philippe G.
    Hou, Yifeng
    Mardare, Cristinel
    [J]. ANALYSIS AND APPLICATIONS, 2016, 14 (03) : 415 - 447
  • [33] ON INEQUALITIES OF KORN, FRIEDRICHS AND BABUSKAAZIZ
    HORGAN, CO
    PAYNE, LE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1983, 82 (02) : 165 - 179
  • [34] Korn Inequalities for a Reinforced Plate
    Sergey A. Nazarov
    Andrey S. Slutskij
    Guido H. Sweers
    [J]. Journal of Elasticity, 2012, 106 : 43 - 69
  • [35] Some Remarks on Korn Inequalities
    Damlamian, Alain
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (02) : 335 - 344
  • [36] Nonlinear Korn Inequalities on a Hypersurface
    Maria MALIN
    Cristinel MARDARE
    [J]. Chinese Annals of Mathematics,Series B, 2018, (03) : 513 - 534
  • [37] Nonlinear Korn Inequalities on a Hypersurface
    Malin, Maria
    Mardare, Cristinel
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (03) : 513 - 534
  • [38] Korn and Poincaré-Korn inequalities for functions with a small jump set
    Filippo Cagnetti
    Antonin Chambolle
    Lucia Scardia
    [J]. Mathematische Annalen, 2022, 383 : 1179 - 1216
  • [39] Nonlinear Korn Inequalities on a Hypersurface
    Maria Malin
    Cristinel Mardare
    [J]. Chinese Annals of Mathematics, Series B, 2018, 39 : 513 - 534
  • [40] Korn Inequalities for a Reinforced Plate
    Nazarov, Sergey A.
    Slutskij, Andrey S.
    Sweers, Guido H.
    [J]. JOURNAL OF ELASTICITY, 2012, 106 (01) : 43 - 69