Band excitation Kelvin probe force microscopy utilizing photothermal excitation

被引:15
|
作者
Collins, Liam [1 ,2 ]
Jesse, Stephen [3 ]
Balke, Nina [3 ]
Rodriguez, Brian J. [1 ,2 ]
Kalinin, Sergei [3 ]
Li, Qian [3 ]
机构
[1] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[2] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
LABEL-FREE; RESOLUTION; NANOSCALE; INTERFACE; CORROSION; DYNAMICS; ARTIFACT; DEVICES;
D O I
10.1063/1.4913910
中图分类号
O59 [应用物理学];
学科分类号
摘要
A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standard ambient KPFM approach, amplitude modulated KPFM. Finally, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [32] Signal amplitude and sensitivity of the Kelvin probe force microscopy
    Ouisse, T
    Martins, F
    Stark, M
    Huant, S
    Chevrier, J
    APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [33] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    NANOTECHNOLOGY, 2009, 20 (50)
  • [34] Dual-heterodyne Kelvin probe force microscopy
    Grévin B.
    Husainy F.
    Aldakov D.
    Aumaître C.
    Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [35] The effect of sample resistivity on Kelvin probe force microscopy
    Weymouth, A. J.
    Giessibl, F. J.
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [36] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [37] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [38] Atomic and Kelvin probe force microscopy of thin films
    Alessandrini, A
    Valdrè, U
    PROCEEDINGS OF THE 5TH MULTINATIONAL CONGRESS ON ELECTRON MICROSCOPY, 2001, : 553 - 554
  • [39] Dual-heterodyne Kelvin probe force microscopy
    Grevin, Benjamin
    Husainy, Fatima
    Aldakov, Dmitry
    Aumaitre, Cyril
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2023, 14 : 1068 - 1084
  • [40] Space Charge Measurements with Kelvin Probe Force Microscopy
    Faliya, Kapil
    Kliem, Herbert
    Dias, Carlos J.
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (03) : 1913 - 1922