Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme

被引:17
|
作者
Al-Sammarraie, Nadia [1 ]
Ray, Swapan K. [1 ]
机构
[1] Univ South Carolina, Sch Med, Dept Pathol Microbiol & Immunol, Columbia, SC 29209 USA
基金
美国国家卫生研究院;
关键词
glioblastoma multiforme (GBM); CRISPR-Cas9 genome editing; apoptosis; proliferation; autophagy; angiogenesis; cell invasion and migration; STEM-CELLS; TEMOZOLOMIDE SENSITIVITY; IN-VITRO; RNA; ANGIOGENESIS; INHIBITION; MECHANISMS; RESISTANCE; GROWTH; COMBINATION;
D O I
10.3390/cells10092342
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Genome editing of Francisella tularensis using (CRISPR-Cas9)
    Southern, Stephanie J.
    Oyston, Petra C. F.
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2020, 176
  • [42] The Application of CRISPR-Cas9 Genome Editing in Caenorhabditis elegans
    Xu, Suhong
    [J]. JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (08) : 413 - 421
  • [43] Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity
    Tycko, Josh
    Myer, Vic E.
    Hsu, Patrick D.
    [J]. MOLECULAR CELL, 2016, 63 (03) : 355 - 370
  • [44] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Massimo Ferrara
    Miriam Haidukowski
    Antonio F. Logrieco
    John F. Leslie
    Giuseppina Mulè
    [J]. Scientific Reports, 9
  • [45] Challenges and advances of CRISPR-Cas9 genome editing in therapeutics
    Stellos, Konstantinos
    Musunuru, Kiran
    [J]. CARDIOVASCULAR RESEARCH, 2019, 115 (02) : E12 - E14
  • [46] Genome characterization and CRISPR-Cas9 editing of a human neocentromere
    Palazzo, Antonio
    Piccolo, Ilaria
    Minervini, Crescenzio Francesco
    Purgato, Stefania
    Capozzi, Oronzo
    D'Addabbo, Pietro
    Cumbo, Cosimo
    Albano, Francesco
    Rocchi, Mariano
    Catacchio, Claudia Rita
    [J]. CHROMOSOMA, 2022, 131 (04) : 239 - 251
  • [47] Multiplexed CRISPR-Cas9 and CRISPR-Cas12a Systems for Genome Editing in Plants
    Li, Gen
    Qi, Yiping
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2023, 59 : S67 - S67
  • [48] Development and Applications of CRISPR-Cas9 for Genome Engineering
    Hsu, Patrick D.
    Lander, Eric S.
    Zhang, Feng
    [J]. CELL, 2014, 157 (06) : 1262 - 1278
  • [49] Development and Applications of CRISPR-Cas9 for Genome Manipulations
    Zhang, Feng
    [J]. FASEB JOURNAL, 2015, 29
  • [50] Applications of CRISPR-Cas9 mediated genome engineering
    Xiao Yang
    [J]. Military Medical Research, 2015, (01) : 11 - 17