A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum

被引:0
|
作者
Massimo Ferrara
Miriam Haidukowski
Antonio F. Logrieco
John F. Leslie
Giuseppina Mulè
机构
[1] National Research Council,Institute of Sciences of Food Production
[2] Kansas State University,Department of Plant Pathology
[3] Bioenergetics and Molecular Biotechnologies,Institute of Biomembranes
[4] National Research Council,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fusarium proliferatum causes diverse diseases of many economically important plants. The fungus produces several mycotoxins of which the fumonisins are the most toxic. Currently, deletion of key genes for mycotoxin biosynthesis is a laborious and time-consuming procedure. We developed a novel CRISPR/Cas9-based genome-editing tool for the direct delivery of preassembled Cas9 ribonucleoproteins into protoplasts of F. proliferatum. Our CRISPR–Cas9 system couples a site-specific double-strand DNA break mediated by two Cas9 ribonucleoproteins with microhomology recombination requiring only 50-bp regions flanking the target gene. This system reduces the risk of off-target mutations and minimizes the risk of altering any gene adjacent to the target region. We used this tool to delete a polyketide synthase gene (FUM1) required for fumonisin biosynthesis. The mutants generated are no longer able to produce fumonisins, confirming the key role of FUM1 in fumonisin biosynthesis. Our CRISPR-Cas9 system is an important new tool for genetic studies of Fusarium.
引用
收藏
相关论文
共 50 条
  • [1] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Ferrara, Massimo
    Haidukowski, Miriam
    Logrieco, Antonio F.
    Leslie, John F.
    Mule, Giuseppina
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System
    Altenbuchner, Josef
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (17) : 5421 - 5427
  • [3] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    [J]. BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [4] Inflammation conditional genome editing mediated by the CRISPR-Cas9 system
    Yuan, Tingting
    Tang, Honglin
    Xu, Xiaojie
    Shao, Jingjing
    Wu, Gaojun
    Cho, Young-Chang
    Ping, Yuan
    Liang, Guang
    [J]. ISCIENCE, 2023, 26 (06)
  • [5] Genome editing using preassembled CRISPR-Cas9 ribonucleoprotein complexes in Fusarium graminearum
    Lee, Nahyun
    Park, Jiyeun
    Kim, Jung-Eun
    Shin, Ji Young
    Min, Kyunghun
    Son, Hokyoung
    [J]. PLOS ONE, 2022, 17 (06):
  • [6] Genome editing in Shiraia bambusicola using CRISPR-Cas9 system
    Deng, Huaxiang
    Gao, Ruijie
    Liao, Xiangru
    Cai, Yujie
    [J]. JOURNAL OF BIOTECHNOLOGY, 2017, 259 : 228 - 234
  • [7] Development of CRISPR-Cas9 genome editing system in Talaromyces marneffei
    Zhang, Xiangmei
    Hu, Xueyan
    Jan, Saad
    Rasheed, Syed Majid
    Zhang, Yun
    Du, Minghao
    Yang, Ence
    [J]. MICROBIAL PATHOGENESIS, 2021, 154
  • [8] The CRISPR-Cas9 Genome Editing System: Not as Precise as Previously Believed
    Mattei, Tobias A.
    [J]. WORLD NEUROSURGERY, 2018, 118 : 377 - 378
  • [9] The Implications of CRISPR-Cas9 Genome Editing for IR
    Perkons, Nicholas R.
    Sheth, Rahul
    Ackerman, Daniel
    Chen, James
    Saleh, Kamiel
    Hunt, Stephen J.
    Nadolski, Gregory J.
    Shi, Junwei
    Gade, Terence P.
    [J]. JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (09) : 1264 - 1267
  • [10] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Taj Arndell
    Niharika Sharma
    Peter Langridge
    Ute Baumann
    Nathan S. Watson-Haigh
    Ryan Whitford
    [J]. BMC Biotechnology, 19