Multiple Imputation of Missing Phenotype Data for QTL Mapping

被引:9
|
作者
Bobb, Jennifer F. [1 ]
Scharfstein, Daniel O. [1 ]
Daniels, Michael J. [2 ]
Collins, Francis S. [3 ]
Kelada, Samir [3 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Univ Florida, Gainesville, FL 32611 USA
[3] NHGRI, NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
multiple imputation; missing data; quantitative trait loci; QUANTITATIVE TRAIT LOCI; AIRWAY RESPONSIVENESS; COLLABORATIVE CROSS; SYSTEMS GENETICS; INCOMPLETE DATA; MOUSE; MICE; PLETHYSMOGRAPHY; FRAMEWORK; RESOURCE;
D O I
10.2202/1544-6115.1676
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Missing phenotype data can be a major hurdle to mapping quantitative trait loci (QTL). Though in many cases experiments may be designed to minimize the occurrence of missing data, it is often unavoidable in practice; thus, statistical methods to account for missing data are needed. In this paper we describe an approach for conjoining multiple imputation and QTL mapping. Methods are applied to map genes associated with increased breathing effort in mice after lung inflammation due to allergen challenge in developing lines of the Collaborative Cross, a new mouse genetics resource. Missing data poses a particular challenge in this study because the desired phenotype summary to be mapped is a function of incompletely observed dose-response curves. Comparison of the multiple imputation approach to two naive approaches for handling missing data suggest that these simpler methods may yield poor results: ignoring missing data through a complete case analysis may lead to incorrect conclusions, while using a last observation carried forward procedure, which does not account for uncertainty in the imputed values, may lead to anti-conservative inference. The proposed approach is widely applicable to other studies with missing phenotype data.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Missing Data and Multiple Imputation
    Cummings, Peter
    [J]. JAMA PEDIATRICS, 2013, 167 (07) : 656 - 661
  • [2] Multiple imputation for missing data
    Patrician, PA
    [J]. RESEARCH IN NURSING & HEALTH, 2002, 25 (01) : 76 - 84
  • [3] Multiple imputation of missing data
    Lydersen, Stian
    [J]. TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2022, 142 (02) : 151 - 151
  • [4] Missing phenotype data imputation in pedigree data analysis
    Fridley, B
    de Andrade, M
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 249 - 249
  • [5] Missing phenotype data imputation in pedigree data analysis
    Fridley, Brooke L.
    de Andrade, Mariza
    [J]. GENETIC EPIDEMIOLOGY, 2008, 32 (01) : 52 - 60
  • [6] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299
  • [7] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [8] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [9] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [10] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592