Missing phenotype data imputation in pedigree data analysis

被引:6
|
作者
Fridley, Brooke L. [1 ]
de Andrade, Mariza [1 ]
机构
[1] Mayo Clin, Div Biostat, Coll Med, Dept Hlth Sci Res, Rochester, MN 55905 USA
关键词
Bayesian; data augmentation; linkage analysis; longitudinal; Markov chain Monte Carlo; variance components;
D O I
10.1002/gepi.20261
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mapping complex traits or phenotypes with small genetic effects, whose phenotypes may be modulated by temporal trends in families are challenging. Detailed and accurate data must be available on families, whether or not the data were collected over time. Missing data complicate matters in pedigree analysis, especially in the case of a longitudinal pedigree analysis. Because most analytical methods developed for the analysis of longitudinal pedigree data require no missing data, the researcher is left with the option of dropping those cases (individuals) with missing data from the analysis or imputing values for the missing data. We present the use of data augmentation within Bayesian polygenic and longitudinal polygenic models to produce k complete datasets. The data augmentation, or imputation step of the Markov chain Monte Carlo, takes into account the observed familial information and the observed subject information available at other time, points. These k complete datasets can then be used to fit single time point or longitudinal pedigree models. By producing a set of k complete datasets and thus k sets of parameter estimates, the total variance associated with an estimate can be partitioned into a within-imputation and a between-imputation component. The method is illustrated using the Genetic Analysis Workshop simulated data.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [1] Missing phenotype data imputation in pedigree data analysis
    Fridley, B
    de Andrade, M
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 249 - 249
  • [2] Imputation of missing ages in pedigree data
    Balise, Raymond R.
    Chen, Yu
    Dite, Gillian
    Felberg, Anna
    Sun, Limei
    Ziogas, Argyrios
    Whittemore, Alice S.
    [J]. HUMAN HEREDITY, 2007, 63 (3-4) : 168 - 174
  • [3] Imputation of genetic composition for missing pedigree data in Serrasalmidae using morphometric data
    Costa, Adriano Carvalho
    Balestre, Marcio
    Botelho, Hortencia Aparecida
    Fonseca de Freitas, Rilke Tadeu
    da Silva Gomes, Richardson Cesar
    de Sousa Campos, Sergio Augusto
    Foresti, Fabio Porto
    Hashimoto, Diogo Teruo
    Martins, Diego Galetti
    do Prado, Fernanda Dotti
    Correa Mendonca, Maria Andreia
    [J]. SCIENTIA AGRICOLA, 2017, 74 (06): : 443 - 449
  • [4] Multiple Imputation of Missing Phenotype Data for QTL Mapping
    Bobb, Jennifer F.
    Scharfstein, Daniel O.
    Daniels, Michael J.
    Collins, Francis S.
    Kelada, Samir
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01):
  • [5] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    [J]. EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [6] IMPUTATION OF MISSING DATA
    Lunt, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49
  • [7] Missing Data: data replacement and imputation
    Hutcheson, Graeme
    Pampaka, Maria
    [J]. JOURNAL OF MODELLING IN MANAGEMENT, 2012, 7 (02)
  • [8] A comparative analysis of missing data imputation techniques on sedimentation data
    Loh, Wing Son
    Ling, Lloyd
    Chin, Ren Jie
    Lai, Sai Hin
    Loo, Kar Kuan
    Sen Seah, Choon
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (06)
  • [9] The use of multiple imputation for the analysis of missing data
    Sinharay, S
    Stern, HS
    Russell, D
    [J]. PSYCHOLOGICAL METHODS, 2001, 6 (04) : 317 - 329
  • [10] Regression multiple imputation for missing data analysis
    Yu, Lili
    Liu, Liang
    Peace, Karl E.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2647 - 2664