VPNets: Volume-preserving neural networks for learning source-free dynamics

被引:2
|
作者
Zhu, Aiqing [1 ,2 ]
Zhu, Beibei [3 ]
Zhang, Jiawei [1 ,2 ]
Tang, Yifa [1 ,2 ]
Liu, Jian [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[5] Qilu Univ Technol, Shandong Comp Sci Ctr, Adv Algorithm Joint Lab, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Neural networks; Discovery of dynamics; Source-free dynamics; Volume-preserving; UNIVERSAL APPROXIMATION; SYSTEMS; IDENTIFICATION; DERIVATIVES; PARAMETER;
D O I
10.1016/j.cam.2022.114523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose volume-preserving networks (VPNets) for learning unknown source-free dynamical systems using trajectory data. We propose three modules and combine them to obtain two network architectures, coined R-VPNet and LA-VPNet. The distinct feature of the proposed models is that they are intrinsic volume-preserving. In addition, the corresponding approximation theorems are proved, which theoretically guarantee the expressivity of the proposed VPNets to learn source-free dynamics. The effectiveness, generalization ability and structure-preserving property of the VP-Nets are demonstrated by numerical experiments. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Source-Free Object Detection by Learning to Overlook Domain Style
    Li, Shuaifeng
    Ye, Mao
    Zhu, Xiatian
    Zhou, Lihua
    Xiong, Lin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8004 - 8013
  • [32] Explicit volume-preserving splitting methods for polynomial divergence-free vector fields
    Xue, Huiyan
    Zanna, Antonella
    [J]. BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 265 - 281
  • [33] Explicit volume-preserving splitting methods for polynomial divergence-free vector fields
    Huiyan Xue
    Antonella Zanna
    [J]. BIT Numerical Mathematics, 2013, 53 : 265 - 281
  • [34] Nilpotent normal form for divergence-free vector fields and volume-preserving maps
    Dullin, H. R.
    Meiss, J. D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 156 - 166
  • [35] The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators
    Laurent, Adrien
    McLachlan, Robert I. I.
    Munthe-Kaas, Hans Z. Z.
    Verdier, Olivier
    [J]. FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [36] CROSS-INFERENTIAL NETWORKS FOR SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION
    Tang, Yushun
    Guo, Qinghai
    He, Zhihai
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 96 - 100
  • [37] Source-Free Domain Adaptation (SFDA) for Privacy-Preserving Seizure Subtype Classification
    Zhao, Changming
    Peng, Ruimin
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 2315 - 2325
  • [38] Class Relationship Embedded Learning for Source-Free Unsupervised Domain Adaptation
    Zhang, Yixin
    Wang, Zilei
    He, Weinan
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7619 - 7629
  • [39] Robust self-supervised learning for source-free domain adaptation
    Liang Tian
    Lihua Zhou
    Hao Zhang
    Zhenbin Wang
    Mao Ye
    [J]. Signal, Image and Video Processing, 2023, 17 : 2405 - 2413
  • [40] Collaborative Learning of Diverse Experts for Source-free Universal Domain Adaptation
    Shen, Meng
    Lu, Yanzuo
    Hu, Yanxu
    Ma, Andy J.
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2054 - 2065