VPNets: Volume-preserving neural networks for learning source-free dynamics

被引:2
|
作者
Zhu, Aiqing [1 ,2 ]
Zhu, Beibei [3 ]
Zhang, Jiawei [1 ,2 ]
Tang, Yifa [1 ,2 ]
Liu, Jian [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[5] Qilu Univ Technol, Shandong Comp Sci Ctr, Adv Algorithm Joint Lab, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Neural networks; Discovery of dynamics; Source-free dynamics; Volume-preserving; UNIVERSAL APPROXIMATION; SYSTEMS; IDENTIFICATION; DERIVATIVES; PARAMETER;
D O I
10.1016/j.cam.2022.114523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose volume-preserving networks (VPNets) for learning unknown source-free dynamical systems using trajectory data. We propose three modules and combine them to obtain two network architectures, coined R-VPNet and LA-VPNet. The distinct feature of the proposed models is that they are intrinsic volume-preserving. In addition, the corresponding approximation theorems are proved, which theoretically guarantee the expressivity of the proposed VPNets to learn source-free dynamics. The effectiveness, generalization ability and structure-preserving property of the VP-Nets are demonstrated by numerical experiments. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Explicit volume-preserving numerical schemes for relativistic trajectories and spin dynamics
    Cabrera, Renan
    Campos, Andre G.
    Bondar, Denys, I
    MacLean, Steve
    Fillion-Gourdeau, Francois
    [J]. PHYSICAL REVIEW E, 2021, 103 (04)
  • [22] Source-Free Domain Adaptation for Privacy-Preserving Seizure Prediction
    Zhao, Yuchang
    Feng, Shuai
    Li, Chang
    Song, Rencheng
    Liang, Deng
    Chen, Xun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2787 - 2798
  • [23] Topological dynamics of volume-preserving maps without an equatorial heteroclinic curve
    Arenson, Joshua G.
    Mitchell, Kevin A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [24] VOLUME-PRESERVING CORRECTION FOR IMAGE REGISTRATION USING FREE-FORM DEFORMATIONS
    Faltin, P.
    Chaisaowong, K.
    Aach, T.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2945 - 2948
  • [25] Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics
    Zhang, Ruili
    Liu, Jian
    Qin, Hong
    Tang, Yifa
    He, Yang
    Wang, Yulei
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (05) : 1397 - 1408
  • [26] Lightweight Source-Free Transfer for Privacy-Preserving Motor Imagery Classification
    Zhang, Wen
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (02) : 938 - 949
  • [27] Diabetic Retinopathy Grading by a Source-Free Transfer Learning Approach
    Zhang, Chenrui
    Lei, Tao
    Chen, Ping
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [28] Source-Free Cluster Adaptation for Privacy-Preserving Machinery Fault Diagnosis
    Zhu, Mengliang
    Zeng, Xiangyu
    Liu, Jie
    Yang, Chaoying
    Zhou, Kaibo
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Qing Tian
    Chuang Ma
    Feng-Yuan Zhang
    Shun Peng
    Hui Xue
    [J]. Journal of Computer Science and Technology, 2021, 36 : 606 - 616
  • [30] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Tian, Qing
    Ma, Chuang
    Zhang, Feng-Yuan
    Peng, Shun
    Xue, Hui
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (03) : 606 - 616