A deep learning-based algorithm for 2-D cell segmentation in microscopy images

被引:146
|
作者
Al-Kofahi, Yousef [1 ]
Zaltsman, Alla [2 ]
Graves, Robert [2 ]
Marshall, Will [2 ]
Rusu, Mirabela [1 ,3 ]
机构
[1] GE Global Res, One Res Circle, Niskayuna, NY 12309 USA
[2] GE Healthcare, 1040 12th Ave NW, Issaquah, WA 98027 USA
[3] Stanford Univ, Dept Radiol, 1201 Welch Rd, Stanford, CA 94305 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Microscopy images; 2-D cells segmentation; Deep learning; Watershed segmentation; CYTOPLASM; CLASSIFICATION; TRACKING; NUCLEI;
D O I
10.1186/s12859-018-2375-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Automatic and reliable characterization of cells in cell cultures is key to several applications such as cancer research and drug discovery. Given the recent advances in light microscopy and the need for accurate and high-throughput analysis of cells, automated algorithms have been developed for segmenting and analyzing the cells in microscopy images. Nevertheless, accurate, generic and robust whole-cell segmentation is still a persisting need to precisely quantify its morphological properties, phenotypes and sub-cellular dynamics. Results: We present a single-channel whole cell segmentation algorithm. We use markers that stain the whole cell, but with less staining in the nucleus, and without using a separate nuclear stain. We show the utility of our approach in microscopy images of cell cultures in a wide variety of conditions. Our algorithm uses a deep learning approach to learn and predict locations of the cells and their nuclei, and combines that with thresholding and watershed-based segmentation. We trained and validated our approach using different sets of images, containing cells stained with various markers and imaged at different magnifications. Our approach achieved a 86% similarity to ground truth segmentation when identifying and separating cells. Conclusions: The proposed algorithm is able to automatically segment cells from single channel images using a variety of markers and magnifications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Deep Learning-Based Corpus Callosum Segmentation from Brain Images: A Review
    Sarma, Padmanabha
    Saranya, G.
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (02) : 685 - 700
  • [42] Segmentation of Cell Images Based on Improved Deep Learning Approach
    Huang, Chuanbo
    Ding, Huali
    Liu, Chuanling
    IEEE ACCESS, 2020, 8 : 110189 - 110202
  • [43] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wang, Wenjun
    Su, Chao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (12) : 4495 - 4506
  • [44] Optimizing Glaucoma Diagnosis with Deep Learning-Based Segmentation and Classification of Retinal Images
    Alkhaldi, Nora A.
    Alabdulathim, Ruqayyah E.
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [45] Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge
    Song, Yucheng
    Ren, Shengbing
    Lu, Yu
    Fu, Xianghua
    Wong, Kelvin K. L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [46] Deep learning-based pelvic levator hiatus segmentation from ultrasound images
    Huang, Zeping
    Qu, Enze
    Meng, Yishuang
    Zhang, Man
    Wei, Qiuwen
    Bai, Xianghui
    Zhang, Xinling
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2022, 9
  • [47] Deep learning-based fully automatic segmentation of wrist cartilage in MR images
    Brui, Ekaterina
    Efimtcev, Aleksandr Y.
    Fokin, Vladimir A.
    Fernandez, Remi
    Levchuk, Anatoliy G.
    Ogier, Augustin C.
    Samsonov, Alexey A.
    Mattei, Jean P.
    Melchakova, Irina V.
    Bendahan, David
    Andreychenko, Anna
    NMR IN BIOMEDICINE, 2020, 33 (08)
  • [48] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Damjan Vukovic
    Andrew Wang
    Maria Antico
    Marian Steffens
    Igor Ruvinov
    Ruud JG van Sloun
    David Canty
    Alistair Royse
    Colin Royse
    Kavi Haji
    Jason Dowling
    Girija Chetty
    Davide Fontanarosa
    BMC Medical Informatics and Decision Making, 23
  • [49] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Vukovic, Damjan
    Wang, Andrew
    Antico, Maria
    Steffens, Marian
    Ruvinov, Igor
    van Sloun, Ruud J. G.
    Canty, David
    Royse, Alistair
    Royse, Colin
    Haji, Kavi
    Dowling, Jason
    Chetty, Girija
    Fontanarosa, Davide
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [50] Deep learning-based tumor segmentation of endoscopy images for rectal cancer patients
    Weishaupt, L.
    Antonacci, A. Thibodeau
    Garant, A.
    Singh, K.
    Miller, C.
    Vuong, T.
    Enger, S. A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S773 - S775