A deep learning-based algorithm for 2-D cell segmentation in microscopy images

被引:146
|
作者
Al-Kofahi, Yousef [1 ]
Zaltsman, Alla [2 ]
Graves, Robert [2 ]
Marshall, Will [2 ]
Rusu, Mirabela [1 ,3 ]
机构
[1] GE Global Res, One Res Circle, Niskayuna, NY 12309 USA
[2] GE Healthcare, 1040 12th Ave NW, Issaquah, WA 98027 USA
[3] Stanford Univ, Dept Radiol, 1201 Welch Rd, Stanford, CA 94305 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Microscopy images; 2-D cells segmentation; Deep learning; Watershed segmentation; CYTOPLASM; CLASSIFICATION; TRACKING; NUCLEI;
D O I
10.1186/s12859-018-2375-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Automatic and reliable characterization of cells in cell cultures is key to several applications such as cancer research and drug discovery. Given the recent advances in light microscopy and the need for accurate and high-throughput analysis of cells, automated algorithms have been developed for segmenting and analyzing the cells in microscopy images. Nevertheless, accurate, generic and robust whole-cell segmentation is still a persisting need to precisely quantify its morphological properties, phenotypes and sub-cellular dynamics. Results: We present a single-channel whole cell segmentation algorithm. We use markers that stain the whole cell, but with less staining in the nucleus, and without using a separate nuclear stain. We show the utility of our approach in microscopy images of cell cultures in a wide variety of conditions. Our algorithm uses a deep learning approach to learn and predict locations of the cells and their nuclei, and combines that with thresholding and watershed-based segmentation. We trained and validated our approach using different sets of images, containing cells stained with various markers and imaged at different magnifications. Our approach achieved a 86% similarity to ground truth segmentation when identifying and separating cells. Conclusions: The proposed algorithm is able to automatically segment cells from single channel images using a variety of markers and magnifications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Deep learning-based Pulmonary Arterial Segmentation in Computed Tomography Images
    Merchan, Mishell
    Suarez, Juan
    Pertuz, Said
    2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,
  • [22] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [23] Robust deep learning-based semantic organ segmentation in hyperspectral images
    Seidlitz, Silvia
    Sellner, Jan
    Odenthal, Jan
    Oezdemir, Berkin
    Studier-Fischer, Alexander
    Knoedler, Samuel
    Ayala, Leonardo
    Adler, Tim J.
    Kenngott, Hannes G.
    Tizabi, Minu
    Wagner, Martin
    Nickel, Felix
    Mueller-Stich, Beat P.
    Maier-Hein, Lena
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [24] Deep Learning-Based Segmentation of the Atherosclerotic Carotid Plaque in Ultrasonic Images
    Liapi, Georgia D.
    Kyriacou, Efthyvoulos
    Loizou, Christos P.
    Panayides, Andreas S.
    Pattichis, Constantinos S.
    Nicolaides, Andrew N.
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 187 - 198
  • [25] Deep Learning-Based Detection and Segmentation for BVS Struts in IVOCT Images
    Cao, Yihui
    Lu, Yifeng
    Jin, Qinhua
    Jing, Jing
    Chen, Yundai
    Li, Jianan
    Zhu, Rui
    INTRAVASCULAR IMAGING AND COMPUTER ASSISTED STENTING AND LARGE-SCALE ANNOTATION OF BIOMEDICAL DATA AND EXPERT LABEL SYNTHESIS, 2018, 11043 : 55 - 63
  • [26] Deep Learning-Based Segmentation Method for Brain Tumor in MR Images
    Xiao, Zhe
    Huang, Ruohan
    Ding, Yi
    Lan, Tian
    Dong, RongFeng
    Qin, Zhiguang
    Zhang, Xinjie
    Wang, Wei
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2016,
  • [27] A novel deep learning-based diagnostic algorithm for detection and segmentation of amyloid in digital whole slide images
    Azam, A.
    Bashir, S.
    Khurram, S. A.
    Snead, D.
    Rajpoot, N.
    VIRCHOWS ARCHIV, 2020, 477 : S214 - S214
  • [28] deep learning-based automatic segmentation of rectal tumors in endoscopy images
    Thibodeau-Antonacci, A.
    Weishaupt, L.
    Garant, A.
    Miller, C.
    Vuong, T.
    Nicolai, P.
    Enger, S.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1327 - S1329
  • [29] Deep Learning-Based Segmentation of Trypanosoma cruzi Nests in Histopathological Images
    Hevia-Montiel, Nidiyare
    Haro, Paulina
    Guillermo-Cordero, Leonardo
    Perez-Gonzalez, Jorge
    ELECTRONICS, 2023, 12 (19)
  • [30] Streamlining deep-learning-based segmentation methods for microscopy images
    Dunster, Gideon
    Viana, Matheus Palhares
    Rafelski, Susanne M.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 430A - 431A