Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces

被引:40
|
作者
Koskela, P
Rajala, K
Shanmugalingam, N
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Jyvaskyla, Dept Math & Stat, FIN-40351 Jyvaskyla, Finland
关键词
Cheeger-harmonic; Lipschitz regularity; doubling measure; Poincare inequality; hypercontractivity; logarithmic Sobolev inequality; Newtonian space; heat kernel;
D O I
10.1016/S0022-1236(02)00090-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev-Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 173
页数:27
相关论文
共 50 条
  • [31] Lipschitz functions on unions and quotients of metric spaces
    Freeman, David
    Gartland, Chris
    STUDIA MATHEMATICA, 2023, 273 (01) : 29 - 61
  • [32] Lipschitz-type functions on metric spaces
    Garrido, M. Isabel
    Jaramillo, Jesus A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 282 - 290
  • [33] Lusin-type Theorems for Cheeger Derivatives on Metric Measure Spaces
    David, Guy C.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 296 - 312
  • [34] Haarlet analysis of Lipschitz regularity in metric measure spaces
    Aimar, Hugo
    Bernardis, Ana
    Nowak, Luis
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) : 967 - 975
  • [35] Regularity of harmonic functions in Cheeger-type Sobolev spaces
    Ohta, SI
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 26 (04) : 397 - 410
  • [36] Regularity of Harmonic Functions in Cheeger-Type Sobolev Spaces
    Shin-Ichi Ohta
    Annals of Global Analysis and Geometry, 2004, 26 : 397 - 410
  • [37] Haarlet analysis of Lipschitz regularity in metric measure spaces
    AIMAR Hugo
    BERNARDIS Ana
    NOWAK Luis
    Science China(Mathematics), 2012, 55 (05) : 967 - 975
  • [38] Haarlet analysis of Lipschitz regularity in metric measure spaces
    Hugo Aimar
    Ana Bernardis
    Luis Nowak
    Science China Mathematics, 2012, 55 : 967 - 975
  • [39] Lipschitz continuity for weighted harmonic functions in the unit disc
    Olofsson, Anders
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (10) : 1630 - 1660
  • [40] APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES
    Mocanu, Marcelina
    MATHEMATICAL REPORTS, 2013, 15 (04): : 459 - 475