LONG TERM BEHAVIOR OF RANDOM NAVIER-STOKES EQUATIONS DRIVEN BY COLORED NOISE

被引:27
|
作者
Gu, Anhui [1 ]
Guo, Boling [2 ]
Wang, Bixiang [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[3] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
来源
关键词
Random attractor; colored noise; unbounded domain; Navier-Stokes equations; energy equations; RANDOM ATTRACTORS; PULLBACK ATTRACTORS; ASYMPTOTIC-BEHAVIOR; GLOBAL ATTRACTORS; EXISTENCE; APPROXIMATION; FLOW;
D O I
10.3934/dcdsb.2020020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of long term behavior of the two-dimensional random Navier-Stokes equations driven by colored noise defined in bounded and unbounded domains. We prove the existence and uniqueness of pullback random attractors for the equations with Lipschitz diffusion terms. In the case of additive noise, we show the upper semi-continuity of these attractors when the correlation time of the colored noise approaches zero. When the equations are defined on unbounded domains, we establish the pullback asymptotic compactness of the solutions by Ball's idea of energy equations in order to overcome the difficulty introduced by the noncompactness of Sobolev embeddings.
引用
下载
收藏
页码:2495 / 2532
页数:38
相关论文
共 50 条
  • [41] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [42] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [43] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [44] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [45] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [46] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [47] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [48] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179
  • [49] On the control of Navier-Stokes equations
    Lions, JL
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 543 - +
  • [50] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116