Deep Convolutional Gaussian Processes

被引:15
|
作者
Blomqvist, Kenneth [1 ,2 ]
Kaski, Samuel [1 ,2 ]
Heinonen, Markus [1 ,2 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Helsinki Inst Informat Technol HIIT, Espoo, Finland
关键词
Gaussian processes; Convolutions; Variational inference;
D O I
10.1007/978-3-030-46147-8_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. The model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classification. We demonstrate greatly improved image classification performance compared to current convolutional Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy by over 10% points.
引用
收藏
页码:582 / 597
页数:16
相关论文
共 50 条
  • [41] Learning with deep Gaussian processes and homothety in weather simulation
    Lassana Coulibaly
    Cheick Abdoul Kadir A. Kounta
    Bernard Kamsu-Foguem
    Fana Tangara
    Neural Computing and Applications, 2022, 34 : 17441 - 17453
  • [42] Doubly Stochastic Variational Inference for Deep Gaussian Processes
    Salimbeni, Hugh
    Deisenroth, Marc Peter
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [43] Approximate Inference Turns Deep Networks into Gaussian Processes
    Khan, Mohammad Emtiyaz
    Immer, Alexander
    Abedi, Ehsan
    Korzepa, Maciej
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [44] Wide Neural Networks with Bottlenecks are Deep Gaussian Processes
    Agrawal, Devanshu
    Papamarkou, Theodore
    Hinkle, Jacob
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [45] Learning with deep Gaussian processes and homothety in weather simulation
    Coulibaly, Lassana
    Kounta, Cheick Abdoul Kadir A.
    Kamsu-Foguem, Bernard
    Tangara, Fana
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 17441 - 17453
  • [46] Alpha-divergence minimization for deep Gaussian processes
    Villacampa-Calvo, Carlos
    Hernandez-Munoz, Gonzalo
    Hernandez-Lobato, Daniel
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 150 : 139 - 171
  • [47] Likelihood-free inference with deep Gaussian processes
    Aushev, Alexander
    Pesonen, Henri
    Heinonen, Markus
    Corander, Jukka
    Kaski, Samuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [48] Probabilistic Deep Ordinal Regression Based on Gaussian Processes
    Liu, Yanzhu
    Wang, Fan
    Kong, Adams Wai Kin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5300 - 5308
  • [49] Identification of Atmospheric Variable Using Deep Gaussian Processes
    Jancic, Mitja
    Kocijan, Jus
    Grasic, Bostjan
    IFAC PAPERSONLINE, 2018, 51 (05): : 43 - 48
  • [50] Implicit Posterior Variational Inference for Deep Gaussian Processes
    Yu, Haibin
    Chen, Yizhou
    Dai, Zhongxiang
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32