Deep Convolutional Gaussian Processes

被引:15
|
作者
Blomqvist, Kenneth [1 ,2 ]
Kaski, Samuel [1 ,2 ]
Heinonen, Markus [1 ,2 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Helsinki Inst Informat Technol HIIT, Espoo, Finland
关键词
Gaussian processes; Convolutions; Variational inference;
D O I
10.1007/978-3-030-46147-8_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. The model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classification. We demonstrate greatly improved image classification performance compared to current convolutional Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy by over 10% points.
引用
收藏
页码:582 / 597
页数:16
相关论文
共 50 条
  • [21] Deep Neural Networks as Point Estimates for Deep Gaussian Processes
    Dutordoir, Vincent
    Hensman, James
    van der wilk, Mark
    Ek, Carl Henrik
    Ghahramani, Zoubin
    Durrande, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] Amortized Variational Inference with Graph Convolutional Networks for Gaussian Processes
    Liu, Linfeng
    Liu, Li-Ping
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [23] Multi-view Deep Gaussian Processes
    Sun, Shiliang
    Liu, Qiuyang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 130 - 139
  • [24] Detecting Causality using Deep Gaussian Processes
    Feng, Guanchao
    Quirk, J. Gerald
    Djuric, Petar M.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 472 - 476
  • [25] Deep Gaussian Processes for Estimating Music Mood
    Chapaneri, Santosh
    Jayaswal, Deepak
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [26] Monotonic warpings for additive and deep Gaussian processes
    Steven D. Barnett
    Lauren J. Beesley
    Annie S. Booth
    Robert B. Gramacy
    Dave Osthus
    Statistics and Computing, 2025, 35 (3)
  • [27] Stochastic Deep Gaussian Processes over Graphs
    Li, Naiqi
    Li, Wenjie
    Sun, Jifeng
    Gao, Yinghua
    Jiang, Yong
    Xia, Shu-Tao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] Deep state-space Gaussian processes
    Zheng Zhao
    Muhammad Emzir
    Simo Särkkä
    Statistics and Computing, 2021, 31
  • [29] Random Feature Expansions for Deep Gaussian Processes
    Cutajar, Kurt
    Bonilla, Edwin, V
    Michiardi, Pietro
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [30] Asymmetric Transfer Learning with Deep Gaussian Processes
    Kandemir, Melih
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 730 - 738