Deep Convolutional Gaussian Processes

被引:15
|
作者
Blomqvist, Kenneth [1 ,2 ]
Kaski, Samuel [1 ,2 ]
Heinonen, Markus [1 ,2 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Helsinki Inst Informat Technol HIIT, Espoo, Finland
关键词
Gaussian processes; Convolutions; Variational inference;
D O I
10.1007/978-3-030-46147-8_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. The model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classification. We demonstrate greatly improved image classification performance compared to current convolutional Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy by over 10% points.
引用
收藏
页码:582 / 597
页数:16
相关论文
共 50 条
  • [1] Calibrating Deep Convolutional Gaussian Processes
    Tran, G-L
    Bonilla, E., V
    Cunningham, J. P.
    Michiardi, P.
    Filippone, M.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [2] Convolutional Normalizing Flows for Deep Gaussian Processes
    Yu, Haibin
    Liu, Dapeng
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Bayesian Image Classification with Deep Convolutional Gaussian Processes
    Dutordoir, Vincent
    van der Wilk, Mark
    Artemev, Artem
    Hensman, James
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1529 - 1538
  • [4] DEEP CONVOLUTIONAL GAUSSIAN PROCESSES FOR MMWAVE OUTDOOR LOCALIZATION
    Wang, Xuyu
    Patil, Mohini
    Yang, Chao
    Mao, Shiwen
    Patel, Palak Anilkumar
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8323 - 8327
  • [5] Decision Making under Uncertainty with Convolutional Deep Gaussian Processes
    Jain, Dinesh
    Anumasa, Srinivas
    Srijith, P. K.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 143 - 151
  • [6] Bayesian Link Prediction with Deep Graph Convolutional Gaussian Processes
    Opolka, Felix L.
    Lio, Pietro
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [7] Convolutional Gaussian Processes
    van der Wilk, Mark
    Rasmussen, Carl Edward
    Liensman, James
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [8] Graph Convolutional Gaussian Processes
    Walker, Ian
    Glocker, Ben
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] How deep are deep Gaussian processes?
    Dunlop, Matthew M.
    Girolami, Mark A.
    Stuart, Andrew M.
    Teckentrup, Aretha L.
    Journal of Machine Learning Research, 2018, 19 : 1 - 46
  • [10] How Deep Are Deep Gaussian Processes?
    Dunlop, Matthew M.
    Girolami, Mark A.
    Stuart, Andrew M.
    Teckentrup, Aretha L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19