Suppression of false arrhythmia alarms in the ICU: a machine learning approach

被引:12
|
作者
Ansari, Sardar [1 ,2 ]
Belle, Ashwin [1 ,2 ]
Ghanbari, Hamid [2 ,3 ]
Salamango, Mark [2 ]
Najarian, Kayvan [1 ,2 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Michigan Ctr Integrat Res Clin Care, Ann Arbor, MI USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI USA
[5] Univ Michigan, Dept Comp Sci, Ann Arbor, MI USA
关键词
false alarm; arrhythmia detection; Physionet; 2015; beat detection; PATIENT; FATIGUE;
D O I
10.1088/0967-3334/37/8/1186
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a novel approach for false alarm suppression using machine learning tools. It proposes a multi-modal detection algorithm to find the true beats using the information from all the available waveforms. This method uses a variety of beat detection algorithms, some of which are developed by the authors. The outputs of the beat detection algorithms are combined using a machine learning approach. For the ventricular tachycardia and ventricular fibrillation alarms, separate classification models are trained to distinguish between the normal and abnormal beats. This information, along with alarm-specific criteria, is used to decide if the alarm is false. The results indicate that the presented method was effective in suppressing false alarms when it was tested on a hidden validation dataset.
引用
收藏
页码:1186 / 1203
页数:18
相关论文
共 50 条
  • [1] A Machine Learning Approach to False Alarm Detection for Critical Arrhythmia Alarms
    Wang, Xing
    Gao, Yifeng
    Lin, Jessica
    Rangwala, Huzefa
    Mittu, Ranjeev
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 202 - 207
  • [2] Reducing False Arrhythmia Alarms in the ICU
    Teo, Soo-Kng
    Wong, Jian Cheng
    Yang, Bo
    Yang, Feng
    Feng, Ling
    Lim, Toon Wei
    Su, Yi
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 1177 - 1180
  • [3] Reduction of false arrhythmia alarms using signal selection and machine learning
    Eerikainen, Linda M.
    Vanschoren, Joaquin
    Rooijakkers, Michael J.
    Vullings, Rik
    Aarts, Ronald M.
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) : 1204 - 1216
  • [4] Reduction of False Cardiac Arrhythmia Alarms through the use of Machine Learning Techniques
    Caballero, Miguel
    Mirsky, Grace M.
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 1169 - 1172
  • [5] Reducing False Arrhythmia Alarms Using Robust Interval Estimation and Machine Learning
    Antink, Christoph Hoog
    Leonhardt, Steffen
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 285 - 288
  • [6] Reducing False Arrhythmia Alarms in the ICU by Hilbert QRS Detection
    Sadr, Nadi
    Huvanandana, Jacqueline
    Doan Trang Nguyen
    Kalra, Chandan
    McEwan, Alistair
    de Chazal, Philip
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 1173 - 1176
  • [7] Detecting False Arrhythmias Alarms in the ICU Using a Deep Learning Approach
    Ardila, Karol
    Moreno, German
    Fajardo, Carlos A.
    Santos, Camilo
    2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,
  • [8] Suppression of False Arrhythmia Alarms Using ECG and Pulsatile Waveforms
    Couto, Paula
    Ramalho, Ruben
    Rodrigues, Rui
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 749 - 752
  • [9] A contrastive learning approach for ICU false arrhythmia alarm reduction
    Zhou, Yuerong
    Zhao, Guoshuai
    Li, Jun
    Sun, Gan
    Qian, Xueming
    Moody, Benjamin
    Mark, Roger G.
    Lehman, Li-wei H.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] A contrastive learning approach for ICU false arrhythmia alarm reduction
    Yuerong Zhou
    Guoshuai Zhao
    Jun Li
    Gan Sun
    Xueming Qian
    Benjamin Moody
    Roger G. Mark
    Li-wei H. Lehman
    Scientific Reports, 12