A Machine Learning Approach to False Alarm Detection for Critical Arrhythmia Alarms

被引:17
|
作者
Wang, Xing [1 ]
Gao, Yifeng [1 ]
Lin, Jessica [1 ]
Rangwala, Huzefa [1 ]
Mittu, Ranjeev [2 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
[2] Naval Res Lab, Washington, DC 20375 USA
关键词
CARE; ICU;
D O I
10.1109/ICMLA.2015.176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High false alarm rates in Intensive Care Unit (ICU) is a common problem that leads to alarm desensitization-a phenomenon called alarm fatigue. Alarm fatigue can cause longer response time or missing of important alarms. In this work, we propose a methodology to identify false alarms generated by ICU bedside monitors. The novelty in our approach lies in the extraction of 216 relevant features to capture the characteristics of all alarms, from both arterial blood pressure (ABP) and electrocardiogram (ECG) signals. Our multivariate approach mitigates the imprecision caused by existing heartbeat/peak detection algorithms. Unlike existing methods on ICU false alarm detection, our approach does not require separate techniques for different types of alarms. The experimental results show that our approach can achieve high accuracy on false alarm detection, and can be generalized for different types of alarms.
引用
收藏
页码:202 / 207
页数:6
相关论文
共 50 条
  • [1] Suppression of false arrhythmia alarms in the ICU: a machine learning approach
    Ansari, Sardar
    Belle, Ashwin
    Ghanbari, Hamid
    Salamango, Mark
    Najarian, Kayvan
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) : 1186 - 1203
  • [2] Reduction of false arrhythmia alarms using signal selection and machine learning
    Eerikainen, Linda M.
    Vanschoren, Joaquin
    Rooijakkers, Michael J.
    Vullings, Rik
    Aarts, Ronald M.
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) : 1204 - 1216
  • [3] A contrastive learning approach for ICU false arrhythmia alarm reduction
    Zhou, Yuerong
    Zhao, Guoshuai
    Li, Jun
    Sun, Gan
    Qian, Xueming
    Moody, Benjamin
    Mark, Roger G.
    Lehman, Li-wei H.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] A contrastive learning approach for ICU false arrhythmia alarm reduction
    Yuerong Zhou
    Guoshuai Zhao
    Jun Li
    Gan Sun
    Xueming Qian
    Benjamin Moody
    Roger G. Mark
    Li-wei H. Lehman
    Scientific Reports, 12
  • [5] Reduction of False Cardiac Arrhythmia Alarms through the use of Machine Learning Techniques
    Caballero, Miguel
    Mirsky, Grace M.
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 1169 - 1172
  • [6] Reducing False Arrhythmia Alarms Using Robust Interval Estimation and Machine Learning
    Antink, Christoph Hoog
    Leonhardt, Steffen
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 285 - 288
  • [7] Semantic-based false alarm detection approach via machine learning
    Qian, Meiyuan
    Luo, Jun
    Ge, Yu
    Sun, Chen
    Ge, Xiuting
    Huang, Wanmin
    2021 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C 2021), 2021, : 60 - 66
  • [8] Detection of false arrhythmia alarms with emphasis on ventricular tachycardia
    Rodrigues, Rui
    Couto, Paula
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) : 1326 - 1339
  • [9] SOUNDING THE ALARM ON FALSE ALARMS
    BUGBEE, RM
    POLICE CHIEF, 1983, 50 (06): : 41 - 42
  • [10] False alarm over environmental false alarms
    Pacala, SW
    Bulte, E
    List, JA
    Levin, SA
    SCIENCE, 2003, 301 (5637) : 1187 - 1188