Suppression of false arrhythmia alarms in the ICU: a machine learning approach

被引:12
|
作者
Ansari, Sardar [1 ,2 ]
Belle, Ashwin [1 ,2 ]
Ghanbari, Hamid [2 ,3 ]
Salamango, Mark [2 ]
Najarian, Kayvan [1 ,2 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Michigan Ctr Integrat Res Clin Care, Ann Arbor, MI USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI USA
[5] Univ Michigan, Dept Comp Sci, Ann Arbor, MI USA
关键词
false alarm; arrhythmia detection; Physionet; 2015; beat detection; PATIENT; FATIGUE;
D O I
10.1088/0967-3334/37/8/1186
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a novel approach for false alarm suppression using machine learning tools. It proposes a multi-modal detection algorithm to find the true beats using the information from all the available waveforms. This method uses a variety of beat detection algorithms, some of which are developed by the authors. The outputs of the beat detection algorithms are combined using a machine learning approach. For the ventricular tachycardia and ventricular fibrillation alarms, separate classification models are trained to distinguish between the normal and abnormal beats. This information, along with alarm-specific criteria, is used to decide if the alarm is false. The results indicate that the presented method was effective in suppressing false alarms when it was tested on a hidden validation dataset.
引用
收藏
页码:1186 / 1203
页数:18
相关论文
共 50 条
  • [21] A Diffusion Model with Contrastive Learning for ICU False Arrhythmia Alarm Reduction
    Wu, Feng
    Zhao, Guoshuai
    Qian, Xueming
    Lehman, Li-wei H.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4912 - 4920
  • [22] POOR ECG SIGNAL QUALITY ASSOCIATED WITH FALSE ARRHYTHMIA ALARMS
    Shahriari, Yalda
    Ding, Quan
    Fidler, Richard
    Pelter, Michele
    Bai, Yong
    Villaroman, Andrea
    Hu, Xiao
    CRITICAL CARE MEDICINE, 2015, 43 (12)
  • [23] Double Trouble: Patients With Both True and False Arrhythmia Alarms
    Nguyen, Stella Chiu
    Suba, Sukardi
    Hu, Xiao
    Pelter, Michele M.
    CRITICAL CARE NURSE, 2020, 40 (02) : 14 - 23
  • [24] Patient Characteristics Associated with False Arrhythmia Alarms in Intensive Care
    Harris, Patricia R.
    Zegre-Hemsey, Jessica K.
    Mammone, Tina
    Schindler, Daniel
    Hu, Xiao
    Bai, Yong
    Paul, Steven M.
    Drew, Barbara J.
    CIRCULATION, 2014, 130
  • [25] Patient characteristics associated with false arrhythmia alarms in intensive care
    Harris, Patricia R.
    Zegre-Hemsey, Jessica K.
    Schindler, Daniel
    Bai, Yong
    Pelter, Michele M.
    Hu, Xiao
    THERAPEUTICS AND CLINICAL RISK MANAGEMENT, 2017, 13 : 499 - 513
  • [26] Deep learning for network intrusion: A hierarchical approach to reduce false alarms
    Moore, Samuel J.
    Cruciani, Federico
    Nugent, Chris D.
    Zhang, Shuai
    Cleland, Ian
    Sani, Sadiq
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 18
  • [27] HOW DO WE SET ALARMS IN THE ICU: DATA FROM THE FAIR ICU (FALSE ALARMS IDENTIFICATION AND REDUCTION IN THE ICU) STUDY
    Max, A.
    Sauneuf, B.
    Grimaldi, D.
    Vandenbunder, B.
    Lemiale, V.
    Charpentier, J.
    Cariou, A.
    Mira, J. -P.
    Chiche, J. -D.
    INTENSIVE CARE MEDICINE, 2009, 35 : 260 - 260
  • [28] A Machine Learning Approach for the Classification of Cardiac Arrhythmia
    Shimpi, Prajwal
    Shah, Sanskruti
    Shroff, Maitri
    Godbole, Anand
    2017 INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC), 2017, : 603 - 607
  • [29] False Arrhythmia Alarms of Patient Monitoring Systems in Intensive Care Units
    Yanar, Erdem
    Dogrusoz, Yesim Serinagaoglu
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [30] A Novel Algorithm for Reducing False Arrhythmia Alarms in Intensive Care Units
    Srivastava, Chandan
    Sharma, Sonal
    Jalali, Ali
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 2525 - 2528