SUMMVIS: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization

被引:0
|
作者
Vig, Jesse [1 ]
Kryscinski, Wojciech [1 ]
Goel, Karan [2 ]
Rajani, Nazneen Fatema [1 ]
机构
[1] Salesforce Res, Palo Alto, CA 94301 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis, the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SUMMVIS, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [31] Distributed and interactive visual analysis of omics data
    Farag, Yehia
    Berven, Frode S.
    Jonassen, Inge
    Petersen, Kjell
    Barsnes, Harald
    JOURNAL OF PROTEOMICS, 2015, 129 : 78 - 82
  • [32] Interactive Visual Analysis for Vehicle Detector Data
    Chen, Yi-Cheng
    Wang, Yu-Shuen
    Lin, Wen-Chieh
    Huang, Wei-Xiang
    Lin, I-Chen
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 171 - 180
  • [33] Probabilistic Database Summarization for Interactive Data Exploration
    Orr, Laurel
    Balazinska, Magdalena
    Suciu, Dan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (10): : 1154 - 1165
  • [34] Data Selection Curriculum for Abstractive Text Summarization
    Sun, Shichao
    Yuan, Ruifeng
    He, Jianfei
    Cao, Ziqiang
    Li, Wenjie
    Jia, Xiaohua
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 7990 - 7995
  • [35] Text Summarization Based on Conceptual Data Classification
    AlJa'am, Jihad M.
    Jaoua, Ali M.
    Hasnah, Ahmad M.
    Hassan, F.
    Mohamed, H.
    Mosaid, T.
    Saleh, H.
    Abdullah, F.
    Cherif, H.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2006, 1 (04) : 22 - 36
  • [36] Text Summarization for Big Data: A Comprehensive Survey
    Gupta, Vanyaa
    Bansal, Neha
    Sharma, Arun
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 503 - 516
  • [37] Exploiting Summarization Data to Help Text Simplification
    Sun, Renliang
    Yang, Zhixian
    Wan, Xiaojun
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 39 - 51
  • [38] Using Data Augmentation for Improving Text Summarization
    Constantin, Daniel
    Mihaescu, Marian Cristian
    Heras, Stella
    Jordan, Jaume
    Palanca, Javier
    Julian, Vicente
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II, 2025, 15347 : 132 - 144
  • [39] Figure-Associated Text Summarization and Evaluation
    Ramesh, Balaji Polepalli
    Sethi, Ricky J.
    Yu, Hong
    PLOS ONE, 2015, 10 (02):
  • [40] Evaluation metrics on text summarization: comprehensive survey
    Davoodijam, Ensieh
    Alambardar Meybodi, Mohsen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (12) : 7717 - 7738