SUMMVIS: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization

被引:0
|
作者
Vig, Jesse [1 ]
Kryscinski, Wojciech [1 ]
Goel, Karan [2 ]
Rajani, Nazneen Fatema [1 ]
机构
[1] Salesforce Res, Palo Alto, CA 94301 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis, the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SUMMVIS, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [21] The TIPSTER SUMMAC text summarization evaluation
    Mani, I
    House, D
    Klein, G
    Hirschman, L
    Firmin, T
    Sundheim, B
    NINTH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS, 1999, : 77 - 85
  • [22] Evaluation of Cross Domain Text Summarization
    Scanlon, Liam
    Zhang, Shiwei
    Zhang, Xiuzhen
    Sanderson, Mark
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1853 - 1856
  • [23] Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization
    Cheang, Chi Seng
    Chan, Hou Pong
    Wong, Derek F.
    Liu, Xuebo
    Li, Zhaocong
    Sun, Yanming
    Liu, Shudong
    Chao, Lidia S.
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 16205 - 16217
  • [24] Reinforcement Learning Models for Abstractive Text Summarization
    Buciumas, Sergiu
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 270 - 271
  • [25] EventThread: Visual Summarization and Stage Analysis of Event Sequence Data
    Guo, Shunan
    Xu, Ke
    Zhao, Rongwen
    Gotz, David
    Zha, Hongyuan
    Cao, Nan
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 56 - 65
  • [26] Extractive Text Summarization Models for Urdu Language
    Nawaz, Ali
    Bakhtyar, Maheen
    Baber, Junaid
    Ullah, Ihsan
    Noor, Waheed
    Basit, Abdul
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [27] Juxtaform: interactive visual summarization for exploratory shape design
    Pandey, Karran
    Chevalier, Fanny
    Singh, Karan
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [28] Interactive Visual Analysis of Police Records Data
    Ning, Xinyu
    Sun, Guodao
    Jin, Lu
    Ding, Weijie
    Liang, Ronghua
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (07): : 1064 - 1076
  • [29] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [30] Automatic Text Summarization of Biomedical Text Data: A Systematic Review
    Chaves, Andrea
    Kesiku, Cyrille
    Garcia-Zapirain, Begonya
    INFORMATION, 2022, 13 (08)