Asymptotics of Pseudo-Jacobi Polynomials with Varying Parameters

被引:6
|
作者
Song, Z.
Wong, R.
机构
[1] York Univ, N York, ON, Canada
[2] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
ORTHOGONAL POLYNOMIALS;
D O I
10.1111/sapm.12177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of the Pseudo-Jacobi polynomials Pn(z; a, b) as n -> 8 for z in the whole complex plane. These polynomials are also known as the Romanovski-Routh polynomials. They occur in quantum mechanics, quark physics, and random matrix theory. When the parameter a is fixed or a > -n, there is no real-line orthogonality. Here, we consider the case when the parameters a and b depend on n; more precisely, we assume a = -(An + A(0)), A > 1 and b = Bn + B-0, where A, B, A(0), B-0 are real constants. Our main tool is the asymptotic method developed for differential equations with a large parameter.
引用
收藏
页码:179 / 217
页数:39
相关论文
共 50 条
  • [41] Semi-classical jacobi polynomials, hankel determinants and asymptotics
    Min, Chao
    Chen, Yang
    arXiv, 2021,
  • [42] Asymptotics of Jacobi-Pieiro Polynomials and Functions of the Second Kind
    Lysov, V. G.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 495 - 498
  • [43] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Meijer, HG
    Piñar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) : 87 - 97
  • [44] Asymptotics of Jacobi–Piñeiro Polynomials and Functions of the Second Kind
    V. G. Lysov
    Mathematical Notes, 2018, 103 : 495 - 498
  • [45] ASYMPTOTICS OF RACAH POLYNOMIALS WITH FIXED PARAMETERS
    Wang, X. -S.
    Wong, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1083 - 1096
  • [46] Semi-classical Jacobi polynomials, Hankel determinants and asymptotics
    Chao Min
    Yang Chen
    Analysis and Mathematical Physics, 2022, 12
  • [47] Asymptotics of Polynomials Orthogonal on a Cross with a Jacobi-Type Weight
    Ahmad Barhoumi
    Maxim L. Yattselev
    Complex Analysis and Operator Theory, 2020, 14
  • [48] A divide-and-conquer method for constructing a pseudo-Jacobi matrix from mixed given data
    Xu, Wei-Ru
    Bebiano, Natalia
    Shu, Qian-Yu
    Feng, Ting-Ting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 256 - 281
  • [49] Orthogonality of Jacobi polynomials with general parameters
    Kuijlaars, ABJ
    Martínez-Finkelshtein, A
    Orive, R
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 19 : 1 - 17
  • [50] On the Finite Orthogonality ofq-Pseudo-Jacobi Polynomials
    Masjed-Jamei, Mohammad
    Saad, Nasser
    Koepf, Wolfram
    Soleyman, Fatemeh
    MATHEMATICS, 2020, 8 (08)