Asymptotics of Pseudo-Jacobi Polynomials with Varying Parameters

被引:6
|
作者
Song, Z.
Wong, R.
机构
[1] York Univ, N York, ON, Canada
[2] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
ORTHOGONAL POLYNOMIALS;
D O I
10.1111/sapm.12177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of the Pseudo-Jacobi polynomials Pn(z; a, b) as n -> 8 for z in the whole complex plane. These polynomials are also known as the Romanovski-Routh polynomials. They occur in quantum mechanics, quark physics, and random matrix theory. When the parameter a is fixed or a > -n, there is no real-line orthogonality. Here, we consider the case when the parameters a and b depend on n; more precisely, we assume a = -(An + A(0)), A > 1 and b = Bn + B-0, where A, B, A(0), B-0 are real constants. Our main tool is the asymptotic method developed for differential equations with a large parameter.
引用
收藏
页码:179 / 217
页数:39
相关论文
共 50 条
  • [21] An inverse eigenvalue problem for doubly periodic pseudo-Jacobi matrices
    Xu, Wei-Ru
    Bebiano, Natalia
    Chen, Guo-Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405
  • [22] An algorithm for constructing a pseudo-Jacobi matrix from given spectral data
    Bebiano, N.
    Furtado, S.
    da Providencia, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 185 - 197
  • [23] Generalized inverse spectral problem for pseudo-Jacobi matrices with mixed eigendata
    Xu, Wei-Ru
    Bebiano, Natalia
    Chen, Guo-Liang
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (06) : 773 - 789
  • [24] Inverse spectral problem for pseudo-Jacobi matrices with partial spectral data
    Su, Qifang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 297 : 1 - 12
  • [25] The Computational Solution of Generalized Inverse Eigenvalue Problem for Pseudo-Jacobi Matrix
    Yi, Fuxia
    Li, Enhua
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [26] Accurate quaternion fractional-order pseudo-Jacobi–Fourier moments
    Xiangyang Wang
    Yuyang Zhang
    Jialin Tian
    Panpan Niu
    Hongying Yang
    Pattern Analysis and Applications, 2022, 25 : 731 - 755
  • [27] QFPJFMs: Quaternion Fractional-Order Pseudo-Jacobi–Fourier Moments
    Xiangyang Wang
    Maoying Deng
    Panpan Niu
    Hongying Yang
    Journal of Mathematical Imaging and Vision, 2024, 66 : 93 - 114
  • [28] Asymptotics for extremal polynomials with varying measures
    Hernández, MB
    Ceniceros, JM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 19 : 29 - 36
  • [29] Image analysis by pseudo-Jacobi (p=4, q=3)-Fourier moments
    Amu, G
    Hasi, S
    Yang, XY
    Ping, ZL
    APPLIED OPTICS, 2004, 43 (10) : 2093 - 2101
  • [30] Pointwise asymptotics of the ratio of Jacobi-type polynomials
    Fejzullahu, Bujar Xh
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (02) : 97 - 110