Basic propositional calculus I

被引:46
|
作者
Ardeshir, M
Ruitenburg, W
机构
[1] Sharif Univ Technol, Dept Math, Tehran, Iran
[2] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
关键词
constructive propositional logic; Kripke models;
D O I
10.1002/malq.19980440304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an axiomatization for Basic Propositional Calculus BPC and give a completeness theorem for the class of transitive Kripke structures. We present several refinements, including a completeness theorem for irreflexive trees. The class of intermediate logics includes two maximal nodes, one being Classical Propositional Calculus CPC, the other being E-1, a theory axiomatized by T --> perpendicular to. The intersection CPC boolean AND E-1 is axiomatizable by the Principle of the Excluded Middle A boolean OR inverted left perpendicular A. If B is a formula such that (T --> B) --> B is not derivable, then the lattice of formulas built from one propositional variable p using only the binary connectives, is isomorphically preserved if B is substituted for p. A formula (T --> B) --> B is derivable exactly when B is provably equivalent to a formula of the form ((T --> A) --> A) --> (T --> A).
引用
收藏
页码:317 / 343
页数:27
相关论文
共 50 条
  • [21] A Schemata Calculus for Propositional Logic
    Aravantinos, Vincent
    Caferra, Ricardo
    Peltier, Nicolas
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 32 - 46
  • [22] Undecidable Iterative Propositional Calculus
    Bokov, G. V.
    [J]. ALGEBRA AND LOGIC, 2016, 55 (04) : 274 - 282
  • [23] STRUCTURAL COMPLETENESS OF PROPOSITIONAL CALCULUS
    POGORZELSKI, WA
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (05): : 349 - +
  • [24] AN APPROACH TO INFINITARY PROPOSITIONAL CALCULUS
    THOMASON, RH
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1966, 31 (01) : 150 - &
  • [25] A CALCULUS OF PROPOSITIONAL PROPERTIES OF PROGRAMS
    GAISARYAN, SS
    LASTOVETSKII, AL
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 1990, 16 (03) : 93 - 99
  • [26] PROPOSITIONAL CALCULUS - NIDDITCH,PH
    PATTON, TE
    [J]. PHILOSOPHICAL REVIEW, 1964, 73 (01): : 127 - 129
  • [27] Knowledge forgetting in propositional μ-calculus
    Feng, Renyan
    Wang, Yisong
    Qian, Ren
    Yang, Lei
    Chen, Panfeng
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (01) : 1 - 43
  • [28] The higher dimensional propositional calculus
    Bucciarelli, A.
    Curien, P-L
    Ledda, A.
    Paoli, F.
    Salibra, A.
    [J]. LOGIC JOURNAL OF THE IGPL, 2024,
  • [29] A COUPLE OF NOVELTIES IN THE PROPOSITIONAL CALCULUS
    HOARE, CAR
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1985, 31 (02): : 173 - 178
  • [30] Revision in extended propositional calculus
    Papini, O
    Rauzy, A
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING AND UNCERTAINTY, 1995, 946 : 328 - 335