The higher dimensional propositional calculus

被引:0
|
作者
Bucciarelli, A. [1 ,2 ]
Curien, P-L [1 ,2 ]
Ledda, A. [3 ]
Paoli, F.
Salibra, A. [1 ,2 ]
机构
[1] IRIF, CNRS, Paris, France
[2] Univ Paris Cite, Paris, France
[3] Univ Cagliari, Dipartimento Pedag Psicol Filosofia, Cagliari, Italy
关键词
Boolean algebras; Boolean algebras of dimension n; Classical logic of dimension n; sequent calculus; cut elimination;
D O I
10.1093/jigpal/jzae100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\textrm{CL}$, generalizing the Boolean propositional calculus to $n\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\textrm{CL}$, named $n\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.
引用
收藏
页数:29
相关论文
共 50 条