FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION

被引:18
|
作者
Kong, Dehan [1 ]
Bondell, Howard D. [2 ]
Wu, Yichao [2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Adaptive; breakdown point; least trimmed squares; outliers; penalized regression; robust regression; variable selection; LEAST ANGLE REGRESSION; SQUARES REGRESSION; ORACLE PROPERTIES; MODEL SELECTION; HIGH BREAKDOWN; LASSO; LIKELIHOOD; SHRINKAGE;
D O I
10.5705/ss.202016.0441
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the outlier detection and variable selection problem in linear regression. A mean shift parameter is added to the linear model to reflect the effect of outliers, where an outlier has a nonzero shift parameter. We then apply an adaptive regularization to these shift parameters to shrink most of them to zero. Those observations with nonzero mean shift parameter estimates are regarded as outliers. An L1 penalty is added to the regression parameters to select important predictors. We propose an efficient algorithm to solve this jointly penalized optimization problem and use the extended Bayesian information criteria tuning method to select the regularization parameters, since the number of parameters exceeds the sample size. Theoretical results are provided in terms of high breakdown point, full efficiency, as well as outlier detection consistency. We illustrate our method with simulations and data. Our method is extended to high-dimensional problems with dimension much larger than the sample size.
引用
收藏
页码:1031 / 1052
页数:22
相关论文
共 50 条
  • [41] Robust outlier removal using penalized linear regression in multiview geometry
    Zhou, Guoqing
    Wang, Qing
    Xiao, Zhaolin
    NEUROCOMPUTING, 2017, 267 : 455 - 465
  • [42] Robust Functional Regression for Outlier Detection
    Hullait, Harjit
    Leslie, David S.
    Pavlidis, Nicos G.
    King, Steve
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 3 - 13
  • [43] OUTLIER DETECTION BY ROBUST ALTERNATING REGRESSION
    UKKELBERG, A
    BORGEN, OS
    ANALYTICA CHIMICA ACTA, 1993, 277 (02) : 489 - 494
  • [44] New Efficient Regression Method for Local AADT Estimation via SCAD Variable Selection
    Yang, Bingduo
    Wang, Sheng-Guo
    Bao, Yuanlu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (06) : 2726 - 2731
  • [45] Efficient Local AADT Estimation via SCAD Variable Selection Based on Regression Models
    Yang, Bingduo
    Wang, Sheng-Guo
    Bao, Yuanlu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1898 - +
  • [46] Outlier robust model selection in linear regression
    Müller, S
    Welsh, AH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1297 - 1310
  • [47] Outlier detection in general profiles using penalized regression method
    Zou, Changliang
    Tseng, Sheng-Tsaing
    Wang, Zhaojun
    IIE TRANSACTIONS, 2014, 46 (02) : 106 - 117
  • [48] Robust Variable Selection and Estimation Based on Kernel Modal Regression
    Guo, Changying
    Song, Biqin
    Wang, Yingjie
    Chen, Hong
    Xiong, Huijuan
    ENTROPY, 2019, 21 (04)
  • [49] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [50] Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
    Eskandari, Farzad
    Ormoz, Ehsan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3744 - 3759