LVQ-based video object segmentation through combination of spatial and color features

被引:0
|
作者
Mochamad, H [1 ]
Loy, HC [1 ]
Aoki, T [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
来源
TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes semi-automatic video object segmentation using Learning Vector Quantization (LVQ). For each video frame, we use 5-D feature vectors whose components are spatial information in pixel coordinates and color information in LUV color space. First, the object of interest and its background are defined with human assistance. Both the object of interest and its background are then used to train LVQ code-book vectors to approximate the object shape. Next, the LVQ codebook vectors are used to segment the object of interest automatically for subsequent frames. We introduce a variable weight K for scaling 5-D vector to adjust the balance between spatial and color information for accurate segmentation. Experimental results show that the proposed algorithm is useful for tracking an object moving at moderate speed.
引用
收藏
页码:A211 / A214
页数:4
相关论文
共 50 条
  • [41] Mesh based segmentation and update for object based video
    Gökçetekin, MH
    Harmanci, MD
    Celasun, I
    Tekalp, AM
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 343 - 346
  • [43] Video segmentation based on adaptive combination of multiple features according to MPEG-4
    Tancharoen, D
    Jitapunkul, S
    Kittipanya-ngam, P
    Siritaranukul, N
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2000, PTS 1-3, 2000, 4067 : 1099 - 1106
  • [44] Color Video Segmentation by Dissimilarity Based on Edges
    Ramos, Lucia
    Novo, Jorge
    Rouco, Jose
    Mosquera, Antonio
    Penedo, Manuel G.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 264 - +
  • [45] Learning-Based Object Segmentation Using Regional Spatial Templates and Visual Features
    Gondra, Iker
    Alam, Fahim Irfan
    COMPUTER VISION AND GRAPHICS, 2012, 7594 : 397 - 406
  • [46] Underwater Object Segmentation Based on Optical Features
    Chen, Zhe
    Zhang, Zhen
    Bu, Yang
    Dai, Fengzhao
    Fan, Tanghuai
    Wang, Huibin
    SENSORS, 2018, 18 (01)
  • [47] Learning Unsupervised Video Object Segmentation through Visual Attention
    Wang, Wenguan
    Song, Hongmei
    Zhao, Shuyang
    Shen, Jianbing
    Zhao, Sanyuan
    Hoi, Steven C. H.
    Ling, Haibin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3059 - 3069
  • [48] Video object segmentation through semantic visual words matching
    Hao, Chuanyan
    Chen, Yadang
    Wu, Weimin
    Yang, Zhi-Xin
    Wu, Enhua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 19591 - 19605
  • [49] Video object segmentation through semantic visual words matching
    Chuanyan Hao
    Yadang Chen
    Weimin Wu
    Zhi-Xin Yang
    Enhua Wu
    Multimedia Tools and Applications, 2023, 82 : 19591 - 19605
  • [50] ROBUST AUTOMATIC VIDEO OBJECT SEGMENTATION WITH GRAPHCUT ASSISTED BY SURF FEATURES
    Kudo, Satomi
    Koga, Hisashi
    Yokoyama, Takanori
    Watanabe, Toshinori
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 297 - 300