LVQ-based video object segmentation through combination of spatial and color features

被引:0
|
作者
Mochamad, H [1 ]
Loy, HC [1 ]
Aoki, T [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
来源
TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes semi-automatic video object segmentation using Learning Vector Quantization (LVQ). For each video frame, we use 5-D feature vectors whose components are spatial information in pixel coordinates and color information in LUV color space. First, the object of interest and its background are defined with human assistance. Both the object of interest and its background are then used to train LVQ code-book vectors to approximate the object shape. Next, the LVQ codebook vectors are used to segment the object of interest automatically for subsequent frames. We introduce a variable weight K for scaling 5-D vector to adjust the balance between spatial and color information for accurate segmentation. Experimental results show that the proposed algorithm is useful for tracking an object moving at moderate speed.
引用
收藏
页码:A211 / A214
页数:4
相关论文
共 50 条
  • [31] Integration of motion and image features for automatic video object segmentation
    Wei, W
    Ngan, KN
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 361 - 364
  • [32] Dynamic Color Flow: A Motion-Adaptive Color Model for Object Segmentation in Video
    Bai, Xue
    Wang, Jue
    Sapiro, Guillermo
    COMPUTER VISION-ECCV 2010, PT V, 2010, 6315 : 617 - +
  • [33] OBJECT BASED VIDEO SURVEILLANCE RETRIEVAL USING COLOR AND SPATIAL INFORMATION OF HUMAN APPEARANCE
    Sofinayakhu
    Suvonvorn, Nikom
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING (ICCEE 2011), 2011, : 613 - 617
  • [34] Fast video object segmentation using affine motion and gradient-based color clustering
    Guo, J
    Kim, JW
    Kuo, CCJ
    1998 IEEE SECOND WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 1998, : 486 - 491
  • [35] Video object segmentation based on object enhancement and region merging
    Ryan, Ken
    Amer, Aishy
    Gagnon, Langis
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 273 - +
  • [36] VideoMatch: Matching Based Video Object Segmentation
    Hu, Yuan-Ting
    Huang, Jia-Bin
    Schwing, Alexander G.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 56 - 73
  • [37] Video Object Segmentation Based on Superpixel Trajectories
    Abdelwahab, Mohamed A.
    Abdelwahab, Moataz M.
    Uchiyama, Hideaki
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 191 - 197
  • [38] Video object segmentation based on edge tracking
    Zaletelj, J
    Tasic, JF
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 813 - 816
  • [39] Mosaic-based video object segmentation
    Chen, LH
    Lai, YC
    Su, CW
    Liao, HY
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTERNET AND MULTIMEDIA SYSTEMS AND APPLICATIONS, 2004, : 335 - 340
  • [40] Video object segmentation for content-based video coding
    Zhou, JY
    Ong, EP
    Ko, CC
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : A334 - A337