viewshed3d: An r package for quantifying 3D visibility using terrestrial lidar data

被引:23
|
作者
Lecigne, Bastien [1 ,2 ]
Eitel, Jan U. H. [3 ,4 ]
Rachlow, Janet L. [5 ]
机构
[1] Univ Quebec Montreal, Dept Biol Sci, Ctr Forest Res CEF, Montreal, PQ, Canada
[2] Univ Quebec Montreal, NSERC Hydroquebec Chair Tree Growth Control, Montreal, PQ, Canada
[3] Univ Idaho, Dept Nat Resources & Soc, Moscow, ID 83843 USA
[4] Univ Idaho, McCall Outdoor Sci Sch, Coll Nat Resources, Mccall, ID USA
[5] Univ Idaho, Dept Fish & Wildlife Sci, Moscow, ID 83843 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2020年 / 11卷 / 06期
基金
美国食品与农业研究所;
关键词
animal behaviour; concealment; habitat structure; lidar data; predation risk; terrestrial laser scanner; viewshed; voxel; VIGILANCE; ECOLOGY; RISK;
D O I
10.1111/2041-210X.13385
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Visual information affects animal behaviour and fitness in diverse ways, but a lack of suitable methods to quantify visibility in three-dimensional (3D) environments limits applications of the concept of visibility in ecological research. The viewshed3d r package is dedicated to quantifying the visual environment from a single location or from a cumulation of viewpoints based on 3D point clouds acquired with terrestrial laser scanning. We present the entire workflow required to prepare the data and perform the visibility analyses in viewshed3d. This approach can help unlock the potential contributions of viewshed analyses to the emerging subdiscipline of 'viewshed ecology'.
引用
收藏
页码:733 / 738
页数:6
相关论文
共 50 条
  • [41] Deep 3D Object Detection Networks Using LiDAR Data: A Review
    Wu, Yutian
    Wang, Yueyu
    Zhang, Shuwei
    Ogai, Harutoshi
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1152 - 1171
  • [42] 3D OBJECT DETECTION FOR AUTONOMOUS DRIVING USING TEMPORAL LIDAR DATA
    McCrae, Scott
    Zakhor, Avideh
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2661 - 2665
  • [43] 3D virtual intersection sight distance analysis using lidar data
    Jung, Jaehoon
    Olsen, Michael J.
    Hurwitz, David S.
    Kashani, Alireza G.
    Buker, Kamilah
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 86 : 563 - 579
  • [44] Autonomous Inspection using an Underwater 3D LiDAR
    McLeod, Dan
    Jacobson, John
    Hardy, Mark
    Embry, Carl
    2013 OCEANS - SAN DIEGO, 2013,
  • [45] Target characterization in 3D using infrared lidar
    Foy, BR
    McVey, BD
    Petrin, RR
    Tiee, JJ
    Wilson, C
    TARGETS AND BACKGROUNDS VII: CHARACTERIZATION AND REPRESENTATION, 2001, 4370 : 181 - 187
  • [46] 3D terrestrial LiDAR for obtaining phenotypic information of cigar tobacco plants
    Zhang, Qingsong
    Chen, Zhiling
    Zhou, Zhaoke
    Wang, Lei
    Liao, Qingxi
    Yang, Chunlei
    Yang, Jinpeng
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 226
  • [47] VecTree - Concepts for 3D modelling of deciduous trees from terrestrial Lidar
    Lamprecht, Sebastian
    Stoffels, Johannes
    Udelhoven, Thomas
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2015, (03): : 241 - 255
  • [48] A SUCCINCT 3D VISIBILITY SKELETON
    Lazard, Sylvain
    Weibel, Christophe
    Whitesides, Sue
    Zhang, Linqiao
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (04) : 567 - 589
  • [49] On the Computation of 3D Visibility Skeletons
    Lazard, Sylvain
    Weibel, Christophe
    Whitesides, Sue
    Zhang, Linqiao
    COMPUTING AND COMBINATORICS, 2010, 6196 : 469 - +
  • [50] 3D Gaze Point Localization and Visualization Using LiDAR-based 3D Reconstructions
    Pieszala, James
    Diaz, Gabriel
    Pelz, Jeff
    Speir, Jacqueline
    Bailey, Reynold
    2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, : 201 - 204