viewshed3d: An r package for quantifying 3D visibility using terrestrial lidar data

被引:23
|
作者
Lecigne, Bastien [1 ,2 ]
Eitel, Jan U. H. [3 ,4 ]
Rachlow, Janet L. [5 ]
机构
[1] Univ Quebec Montreal, Dept Biol Sci, Ctr Forest Res CEF, Montreal, PQ, Canada
[2] Univ Quebec Montreal, NSERC Hydroquebec Chair Tree Growth Control, Montreal, PQ, Canada
[3] Univ Idaho, Dept Nat Resources & Soc, Moscow, ID 83843 USA
[4] Univ Idaho, McCall Outdoor Sci Sch, Coll Nat Resources, Mccall, ID USA
[5] Univ Idaho, Dept Fish & Wildlife Sci, Moscow, ID 83843 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2020年 / 11卷 / 06期
基金
美国食品与农业研究所;
关键词
animal behaviour; concealment; habitat structure; lidar data; predation risk; terrestrial laser scanner; viewshed; voxel; VIGILANCE; ECOLOGY; RISK;
D O I
10.1111/2041-210X.13385
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Visual information affects animal behaviour and fitness in diverse ways, but a lack of suitable methods to quantify visibility in three-dimensional (3D) environments limits applications of the concept of visibility in ecological research. The viewshed3d r package is dedicated to quantifying the visual environment from a single location or from a cumulation of viewpoints based on 3D point clouds acquired with terrestrial laser scanning. We present the entire workflow required to prepare the data and perform the visibility analyses in viewshed3d. This approach can help unlock the potential contributions of viewshed analyses to the emerging subdiscipline of 'viewshed ecology'.
引用
收藏
页码:733 / 738
页数:6
相关论文
共 50 条
  • [31] AUTOMATIC CLASSIFICATION AND 3D MODELING OF LIDAR DATA
    Moussa, A.
    El-Sheimy, N.
    PCV 2010: PHOTOGRAMMETRIC COMPUTER VISION AND IMAGE ANALYSIS, PT II, 2010, 38 : 155 - 159
  • [32] 3D building reconstruction from LIDAR data
    Luo, Yuan
    Gavrilova, Marina L.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 1, 2006, 3980 : 431 - 439
  • [33] 3D LiDAR and Color Camera Data Fusion
    Ding, Yuqi
    Liu, Jiaming
    Ye, Jinwei
    Xiang, Weidong
    Wu, Hsiao-Chun
    Busch, Costas
    2020 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2020,
  • [34] Deep Semantic Classification for 3D LiDAR Data
    Dewan, Ayush
    Oliveira, Gabriel L.
    Burgard, Wolfram
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 3544 - 3549
  • [35] Integration of LiDAR and Cathera Data for 3D reconstruction
    Chen, Tsung-I
    Zhang, Yu-Xiang
    Chen, Chia-Yen
    Yeh, Chia-Hung
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2014,
  • [36] 3D Building Reconstruction from LiDAR Data
    Wang, Lu
    Chu, Chee-hung Henry
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3054 - +
  • [37] LiDAR Data Integrity Verification for Autonomous Vehicle Using 3D Data Hiding
    Changalvala, Raghu
    Malik, Hafiz
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1219 - 1225
  • [38] 3D RECONSTRUCTION OF BUILDINGS WITH GABLED AND HIPPED STRUCTURES USING LIDAR DATA
    Amini, H.
    Pahlavani, P.
    Karimi, R.
    1ST ISPRS INTERNATIONAL CONFERENCE ON GEOSPATIAL INFORMATION RESEARCH, 2014, 40 (2/W3): : 47 - 52
  • [39] 3D Modeling Using LiDAR Data and its Geological and Geotechnical Applications
    Hu, Hui
    Fernandez-Steeger, Tomas M.
    Dong, Mei
    Hieu Trung Nguyen
    Azzam, Rafig
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [40] Mapping Riparian Vegetation Functions Using 3D Bispectral LiDAR Data
    Laslier, Marianne
    Hubert-Moy, Laurence
    Dufour, Simon
    WATER, 2019, 11 (03)